मराठी

Mark the Correct Alternative in the Following Question: Let a and B Be Two Events . If P ( a ) = 0 . 2 , P ( B ) = 0 . 4 , P ( a ∪ B ) = 0 . 6 , Then P ( a | B ) is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in the following question:

\[\text{ Let A and B be two events  . If } P\left( A \right) = 0 . 2, P\left( B \right) = 0 . 4, P\left( A \cup B \right) = 0 . 6, \text{ then }  P\left( A|B \right) \text{ is equal to} \]

पर्याय

  • 0 . 8 

  • 0 . 5 

  • 0 . 3 

  • 0

MCQ

उत्तर

\[\text{ We have } , \]
\[P\left( A \right) = 0 . 2, P\left( B \right) = 0 . 4 \text{ and }  P\left( A \cup B \right) = 0 . 6\]
\[\text{ As } , P\left( A \cup B \right) = 0 . 6\]
\[ \Rightarrow P\left( A \right) + P\left( B \right) - P\left( A \cap B \right) = 0 . 6\]
\[ \Rightarrow 0 . 2 + 0 . 4 - P\left( A \cap B \right) = 0 . 6\]
\[ \Rightarrow 0 . 6 - P\left( A \cap B \right) = 0 . 6\]
\[ \Rightarrow P\left( A \cap B \right) = 0 . 6 - 0 . 6\]
\[ \Rightarrow P\left( A \cap B \right) = 0\]
\[\text{ Now } , \]
\[P\left( A|B \right) = \frac{P\left( A \cap B \right)}{P\left( B \right)} = \frac{0}{0 . 4} = 0\]

shaalaa.com
Probability Examples and Solutions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 31: Probability - MCQ [पृष्ठ १०८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 31 Probability
MCQ | Q 58 | पृष्ठ १०८

संबंधित प्रश्‍न

A coin is tossed three times, if head occurs on first two tosses, find the probability of getting head on third toss.


A couple has two children. Find the probability that both the children are (i) males, if it is known that at least one of the children is male. (ii) females, if it is known that the elder child is a female.


If A and B are two events such that \[ P\left( A \right) = \frac{7}{13}, P\left( B \right) = \frac{9}{13} \text{ and } P\left( A \cap B \right) = \frac{4}{13}, \text{ then find } P\left( \overline{ A }|B \right) . \]


Two coins are tossed once. Find P (A/B) in each of the following:
A = Tail appears on one coin, B = One coin shows head.


A pair of dice is thrown. Find the probability of getting the sum 8 or more, if 4 appears on the first die.


Two numbers are selected at random from integers 1 through 9. If the sum is even, find the probability that both the numbers are odd.


A pair of dice is thrown. Let E be the event that the sum is greater than or equal to 10 and F be the event "5 appears on the first-die". Find P (E/F). If F is the event "5 appears on at least one die", find P (E/F).


Ten cards numbered 1 through 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3, what is the probability that it is an even number?


A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?
A = the first throw results in head, B = the last throw results in tail.


A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?

A = the number of heads is two, B = the last throw results in head.


A die is tossed twice. Find the probability of getting a number greater than 3 on each toss.

 

A die is thrown thrice. Find the probability of getting an odd number at least once.

 

An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting one red and one blue ball.


The probabilities of two students A and B coming to the school in time are \[\frac{3}{7}\text { and }\frac{5}{7}\] respectively. Assuming that the events, 'A coming in time' and 'B coming in time' are independent, find the probability of only one of them coming to the school in time. Write at least one advantage of coming to school in time.

 

A bag contains 6 black and 3 white balls. Another bag contains 5 black and 4 white balls. If one ball is drawn from each bag, find the probability that these two balls are of the same colour.

 

A speaks truth in 75% and B in 80% of the cases. In what percentage of cases are they likely to contradict each other in narrating the same incident?

 

In a family, the husband tells a lie in 30% cases and the wife in 35% cases. Find the probability that both contradict each other on the same fact.

 

A bag contains 7 white, 5 black and 4 red balls. Four balls are drawn without replacement. Find the probability that at least three balls are black.

 

A and B take turns in throwing two dice, the first to throw 9 being awarded the prize. Show that their chance of winning are in the ratio 9:8.


There are 3 red and 5 black balls in bag 'A'; and 2 red and 3 black balls in bag 'B'. One ball is drawn from bag 'A' and two from bag 'B'. Find the probability that out of the 3 balls drawn one is red and 2 are black.

 

A ordinary cube has four plane faces, one face marked 2 and another face marked 3, find the probability of getting a total of 7 in 5 throws.


Write the probability that a number selected at random from the set of first 100 natural numbers is a cube.

 

If ABC are mutually exclusive and exhaustive events associated to a random experiment, then write the value of P (A) + P (B) + P (C).


A and B are two events such that P (A) = 0.25 and P (B) = 0.50. The probability of both happening together is 0.14. The probability of both A and B not happening is


A person writes 4 letters and addresses 4 envelopes. If the letters are placed in the envelopes at random, then the probability that all letters are not placed in the right envelopes, is


Three integers are chosen at random from the first 20 integers. The probability that their product is even is 


An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is


Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floors is


If P (A ∪ B) = 0.8 and P (A ∩ B) = 0.3, then P \[\left( A \right)\] \[\left( A \right)\] + P \[\left( B \right)\] =


Mark the correct alternative in the following question:

\[\text{ If } P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ and } P\left( A \cup B \right) = \frac{4}{5}, \text{ then }  P\left( B|\overline{ A } \right) = \]


Mark the correct alternative in the following question:

\[\text{ If A and B are two events such that } P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 3 \text{ and }  P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( B \cap A \right) \text{ equals } \]


Mark the correct alternative in the following question: 

\[\text{ If A and B are two independent events such that}  P\left( A \right) = 0 . 3 \text{ and } P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( A|B \right) - P\left( B|A \right) = \]

 

 


Mark the correct alternative in the following question: A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement, then the probability of getting exactly one red ball is


Mark the correct alternative in the following question:
Two cards are drawn from a well shuffled deck of 52 playing cards with replacement. The probability that both cards are queen is


Mark the correct alternative in the following question:
If two events are independent, then


The probability that in a year of 22nd century chosen at random, there will be 53 Sunday, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×