Advertisements
Advertisements
प्रश्न
A and B throw a pair of dice alternately, till one of them gets a total of 10 and wins the game. Find their respective probabilities of winning, if A starts first
उत्तर
`P(`
`P(`
`P(`
`a=1/12 `
By using the formula of infinite G.P.
`P(`
APPEARS IN
संबंधित प्रश्न
An experiment succeeds thrice as often as it fails. Find the probability that in the next five trials, there will be at least 3 successes.
If P (A) = 0.4, P (B) = 0.3 and P (B/A) = 0.5, find P (A ∩ B) and P (A/B).
A couple has two children. Find the probability that both the children are (i) males, if it is known that at least one of the children is male. (ii) females, if it is known that the elder child is a female.
A bag contains 25 tickets, numbered from 1 to 25. A ticket is drawn and then another ticket is drawn without replacement. Find the probability that both tickets will show even numbers.
Two cards are drawn without replacement from a pack of 52 cards. Find the probability that the first is a heart and second is red.
If P (A) = 0.4, P (B) = 0.8, P (B/A) = 0.6. Find P (A/B) and P (A ∪ B).
If A and B are two events such that 2 P (A) = P (B) = \[\frac{5}{13}\] and P (A/B) = \[\frac{2}{5},\] find P (A ∪ B).
Two dice are thrown and it is known that the first die shows a 6. Find the probability that the sum of the numbers showing on two dice is 7.
In a school there are 1000 students, out of which 430 are girls. It is known that out of 430, 10% of the girls study in class XII. What is the probability that a student chosen randomly studies in class XII given that the chosen student is a girl?
Ten cards numbered 1 through 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3, what is the probability that it is an even number?
Given two independent events A and B such that P (A) = 0.3 and P (B) `= 0.6. Find P ( overlineA ∩ B) .`
A and B are two independent events. The probability that A and B occur is 1/6 and the probability that neither of them occurs is 1/3. Find the probability of occurrence of two events.
A die is thrown thrice. Find the probability of getting an odd number at least once.
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: (1 - p1)p2
A bag contains 6 black and 3 white balls. Another bag contains 5 black and 4 white balls. If one ball is drawn from each bag, find the probability that these two balls are of the same colour.
A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that none of them will be selected?
A bag contains 7 white, 5 black and 4 red balls. Four balls are drawn without replacement. Find the probability that at least three balls are black.
A can hit a target 3 times in 6 shots, B : 2 times in 6 shots and C : 4 times in 4 shots. They fix a volley. What is the probability that at least 2 shots hit?
The probability of student A passing an examination is 2/9 and of student B passing is 5/9. Assuming the two events : 'A passes', 'B passes' as independent, find the probability of : (i) only A passing the examination (ii) only one of them passing the examination.
A and B throw a pair of dice alternately. A wins the game if he gets a total of 7 and B wins the game if he gets a total of 10. If A starts the game, then find the probability that B wins.
When three dice are thrown, write the probability of getting 4 or 5 on each of the dice simultaneously.
The probabilities of a student getting I, II and III division in an examination are \[\frac{1}{10}, \frac{3}{5}\text{ and } \frac{1}{4}\]respectively. The probability that the student fails in the examination is
Three integers are chosen at random from the first 20 integers. The probability that their product is even is
Mark the correct alternative in the following question:A flash light has 8 batteries out of which 3 are dead. If two batteries are selected without replacement and tested, then the probability that both are dead is
Mark the correct alternative in the following question:
Two cards are drawn from a well shuffled deck of 52 playing cards with replacement. The probability that both cards are queen is
Mark the correct alternative in the following question:
A box contains 3 orange balls, 3 green balls and 2 blue balls. Three balls are drawn at random from the box without replacement. The probability of drawing 2 green balls and one blue ball is
Mark the correct alternative in the following question:
\[\text{ Let A and B be two events . If } P\left( A \right) = 0 . 2, P\left( B \right) = 0 . 4, P\left( A \cup B \right) = 0 . 6, \text{ then } P\left( A|B \right) \text{ is equal to} \]
A, B and C throw a pair of dice in that order alternatively till one of them gets a total of 9 and wins the game. Find their respective probabilities of winning, if A starts first.