Advertisements
Advertisements
प्रश्न
Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among 100 students, what is the probability that: (i) you both enter the same section? (ii) you both enter the different sections?
उत्तर
(a ) when both enter the same section .
Here possibilities of two cases .
case 1 :- enter both are in section A
if both are in section A , 40 students out of 100 can be selected n ( S ) = ¹⁰⁰C₄₀
and ( 40 - 2) = 38 students out of ( 100 - 2) = 98 can be selected n ( E ) = ⁹⁸C₃₈
so, `P ( E ) = (n ( E ))/(n ( S ))`
= `(⁹⁸C₃₈) / (¹⁰⁰C₄₀)`
=` ((98!)/(38!) × 60! )/( (100!)/(40!) × 60! )`
= `((98!) × (40!) × 60!)/((38!) × (60!) × 100!)`
= `( 98!)/(100!) × ( 40)/(38!)`
=` 1/(100 × 99) × 40 × 39`
= `26/165`
case 2 :- if both are in section B, 60 students out 100 can be selected n( S )= ¹⁰⁰C₆₀
and (60 - 2) = 58 students out of ( 100 - 2)= 98 can be selected n( E ) = ⁹⁸C₅₈
so, P ( E ) =` (n ( E ))/(n (S ))`
= `(⁹⁸C₅₈) / (¹⁰⁰C₆₀)`
=` ((98!)/(58!) × 40! )/ ((100!)/(60!) × 40!)`
=` (98! × 60! × 40!)/(58! × 30! × 100!)`
= ` (98!)/(100!) × (60!)/(58!) × (40!)/(40!)`
= `{ 1/100 × 99 } × { 60 × 59 } × 1`
= `59/165`
Hence, Probability that students are either in section A or B .
= `26/ 165 + 59/165`
=` 85/165`
= `17/33`
(b ) We know,
P( E ) = 1 - P(E')
e.g
The Probability that both enter different sections = 1 - Probability that both enter same sections
= 1 - `17/33`
=` (33 - 17)/33`
= `16/33`
APPEARS IN
संबंधित प्रश्न
A bag A contains 4 black and 6 red balls and bag B contains 7 black and 3 red balls. A die is thrown. If 1 or 2 appears on it, then bag A is chosen, otherwise bag B, If two balls are drawn at random (without replacement) from the selected bag, find the probability of one of them being red and another black.
From a deck of cards, three cards are drawn on by one without replacement. Find the probability that each time it is a card of spade.
A bag contains 20 tickets, numbered from 1 to 20. Two tickets are drawn without replacement. What is the probability that the first ticket has an even number and the second an odd number.
A bag contains 4 white, 7 black and 5 red balls. Three balls are drawn one after the other without replacement. Find the probability that the balls drawn are white, black and red respectively.
If P (A) = \[\frac{7}{13}\], P (B) = \[\frac{9}{13}\] and P (A ∩ B) = \[\frac{4}{13}\], find P (A/B).
If A and B are two events such that P (A ∩ B) = 0.32 and P (B) = 0.5, find P (A/B).
If A and B are two events such that \[ P\left( A \right) = \frac{1}{3}, P\left( B \right) = \frac{1}{4} \text{ and } P\left( A \cup B \right) = \frac{5}{12}, \text{ then find } P\left( A|B \right) \text{ and } P\left( B|A \right) . \]
A coin is tossed three times. Find P (A/B) in each of the following:
A = At least two heads, B = At most two heads
A coin is tossed three times. Find P (A/B) in each of the following:
A = At most two tails, B = At least one tail.
A dice is thrown twice and the sum of the numbers appearing is observed to be 6. What is the conditional probability that the number 4 has appeared at least once?
A die is thrown twice and the sum of the numbers appearing is observed to be 8. What is the conditional probability that the number 5 has appeared at least once?
A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent?
B = the card drawn is a spade, B = the card drawn in an ace.
An unbiased die is tossed twice. Find the probability of getting 4, 5, or 6 on the first toss and 1, 2, 3 or 4 on the second toss.
An anti-aircraft gun can take a maximum of 4 shots at an enemy plane moving away from it. The probabilities of hitting the plane at the first, second, third and fourth shot are 0.4, 0.3, 0.2 and 0.1 respectively. What is the probability that the gun hits the plane?
Two dice are thrown together and the total score is noted. The event E, F and G are "a total of 4", "a total of 9 or more", and "a total divisible by 5", respectively. Calculate P(E), P(F) and P(G) and decide which pairs of events, if any, are independent.
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: p1 p2 .
A bag contains 6 black and 3 white balls. Another bag contains 5 black and 4 white balls. If one ball is drawn from each bag, find the probability that these two balls are of the same colour.
A bag contains 3 red and 5 black balls and a second bag contains 6 red and 4 black balls. A ball is drawn from each bag. Find the probability that one is red and the other is black.
Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that one of them is black and other is red.
Arun and Tarun appeared for an interview for two vacancies. The probability of Arun's selection is 1/4 and that to Tarun's rejection is 2/3. Find the probability that at least one of them will be selected.
A bag contains 7 white, 5 black and 4 red balls. Four balls are drawn without replacement. Find the probability that at least three balls are black.
Three cards are drawn with replacement from a well shuffled pack of 52 cards. Find the probability that the cards are a king, a queen and a jack.
A can hit a target 3 times in 6 shots, B : 2 times in 6 shots and C : 4 times in 4 shots. They fix a volley. What is the probability that at least 2 shots hit?
The probability of student A passing an examination is 2/9 and of student B passing is 5/9. Assuming the two events : 'A passes', 'B passes' as independent, find the probability of : (i) only A passing the examination (ii) only one of them passing the examination.
The contents of three bags I, II and III are as follows:
Bag I : 1 white, 2 black and 3 red balls,
Bag II : 2 white, 1 black and 1 red ball;
Bag III : 4 white, 5 black and 3 red balls.
A bag is chosen at random and two balls are drawn. What is the probability that the balls are white and red?
A bag contains 4 white and 5 black balls and another bag contains 3 white and 4 black balls. A ball is taken out from the first bag and without seeing its colour is put in the second bag. A ball is taken out from the latter. Find the probability that the ball drawn is white.
Three numbers are chosen from 1 to 20. Find the probability that they are consecutive.
In a competition A, B and C are participating. The probability that A wins is twice that of B, the probability that B wins is twice that of C. Find the probability that A losses.
India play two matches each with West Indies and Australia. In any match the probabilities of India getting 0,1 and 2 points are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is
An urn contains 9 balls two of which are red, three blue and four black. Three balls are drawn at random. The probability that they are of the same colour is
Choose the correct alternative in the following question:
\[\text{ If } P\left( A \right) = \frac{2}{5}, P\left( B \right) = \frac{3}{10} \text{ and } P\left( A \cap B \right) = \frac{1}{5}, \text{ then } , P\left( \overline { A }|\overline{ B } \right) P\left( \overline{ B }|\overline{ A } \right) \text{ is equal to } \]
If A and B are two events such that A ≠ Φ, B = Φ, then
Mark the correct alternative in the following question: A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement, then the probability that exactly two of the three balls were red, the first ball being red, is
Mark the correct alternative in the following question:
In a college 30% students fail in Physics, 25% fail in Mathematics and 10% fail in both. One student is chosen at random. The probability that she fails in Physics if she failed in Mathematics is
Mark the correct alternative in the following question
Three persons, A, B and C fire a target in turn starting with A. Their probabilities of hitting the target are 0.4, 0.2 and 0.2, respectively. The probability of two hits is
From a set of 100 cards numbered 1 to 100, one card is drawn at random. The probability that the number obtained on the card is divisible by 6 or 8 but not by 24 is
There are two boxes I and II. Box I contains 3 red and 6 Black balls. Box II contains 5 red and black balls. One of the two boxes, box I and box II is selected at random and a ball is drawn at random. The ball drawn is found to be red. If the probability that this red ball comes out from box II is ' a find the value of n
A, B and C throw a pair of dice in that order alternatively till one of them gets a total of 9 and wins the game. Find their respective probabilities of winning, if A starts first.