English

A and B throw a die alternatively till one of them gets a number greater than four and wins the game. If A starts the game, what is the probability of B winning? - Mathematics

Advertisements
Advertisements

Question

A and B throw a die alternatively till one of them gets a number greater than four and wins the game. If A starts the game, what is the probability of B winning?

Solution

Let S denote the success, i.e. getting a number greater than four and F denote the failure, i.e. getting a number less than four.

`∴ P(S)=2/6=1/3,    P(F)=1−1/3=2/3`

Now, B gets the second throw, if A fails in the first throw.

P(B wins in the second throw) =` P(FS)  = P(F)P(S) = 2/3xx1/3`

Similarly, P(B wins in the fourth throw) = P(FFFS)  = P(F)P(F)P(F)P(S) = ` (2/3)^3xx1/3`

P(B wins in the sixth throw) = P(FFFFFS)  = P(F)P(F)P(F)P(F)P(F)P(S) `= (2/3)^5xx1/3` and so on.

Hence,

P(B wins) = `2/3xx1/3 + (2/3)3xx1/3 + (23)5xx1/3 + ...`

`=2/3xx1/3xx[1+(2/3)2+(2/3)4+......`

`= 2/3xx1/3xx(1/(1−4/9)) `  [a+ar+ar2+... =a/(1r)]

`= 2/5`

Thus, the probability that B wins is 2/5.

shaalaa.com
Probability Examples and Solutions
  Is there an error in this question or solution?
2014-2015 (March) Patna Set 2

RELATED QUESTIONS

A and B throw a pair of dice alternately, till one of them gets a total of 10 and wins the game. Find their respective probabilities of winning, if A starts first


Ten cards numbered 1 through 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3, what is the probability that it is an even number?


Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that first two cards are kings and third card drawn is an ace?


A bag contains 4 white, 7 black and 5 red balls. Three balls are drawn one after the other without replacement. Find the probability that the balls drawn are white, black and red respectively.


A coin is tossed three times. Find P (A/B) in each of the following:

A = At least two heads, B = At most two heads


A pair of dice is thrown. Find the probability of getting 7 as the sum, if it is known that the second die always exhibits an odd number.


A die is rolled. If the outcome is an odd number, what is the probability that it is prime?

 

Two numbers are selected at random from integers 1 through 9. If the sum is even, find the probability that both the numbers are odd.


A pair of dice is thrown. Let E be the event that the sum is greater than or equal to 10 and F be the event "5 appears on the first-die". Find P (E/F). If F is the event "5 appears on at least one die", find P (E/F).


A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent? 

B = the card drawn is a spade, B = the card drawn in an ace.


A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. B and C .


A coin is tossed three times. Let the events AB and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. C and A


A die is thrown thrice. Find the probability of getting an odd number at least once.

 

An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting 2 red balls.  


An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting one red and one blue ball.


Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: p1 + p2 - 2p1p2  


A bag contains 3 red and 5 black balls and a second bag contains 6 red and 4 black balls. A ball is drawn from each bag. Find the probability that one is red and the other is black.


Kamal and Monica appeared for an interview for two vacancies. The probability of Kamal's selection is 1/3 and that of Monika's selection is 1/5. Find the probability that
(i) both of them will be selected
(ii) none of them will be selected
(iii) at least one of them will be selected
(iv) only one of them will be selected.


A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that only one of them will be selected ?

 


Three persons ABC throw a die in succession till one gets a 'six' and wins the game. Find their respective probabilities of winning.


There are 3 red and 5 black balls in bag 'A'; and 2 red and 3 black balls in bag 'B'. One ball is drawn from bag 'A' and two from bag 'B'. Find the probability that out of the 3 balls drawn one is red and 2 are black.

 

In a hockey match, both teams A and B scored same number of goals upto the end of the game, so to decide the winner, the refree asked both the captains to throw a die alternately and decide that the team, whose captain gets a first six, will be declared the winner. If the captain of team A was asked to start, find their respective probabilities of winning the match and state whether the decision of the refree was fair or not.


An urn contains 10 white and 3 black balls. Another urn contains 3 white and 5 black balls. Two are drawn from first urn and put into the second urn and then a ball is drawn from the latter. Find the probability that its is a white ball.


Three numbers are chosen from 1 to 20. Find the probability that they are consecutive.

 

An unbiased die with face marked 1, 2, 3, 4, 5, 6 is rolled four times. Out of 4 face values obtained, find the probability that the minimum face value is not less than 2 and the maximum face value is not greater than 5.


The probability that a leap year will have 53 Fridays or 53 Saturdays is


A speaks truth in 75% cases and B speaks truth in 80% cases. Probability that they contradict each other in a statement, is


Choose the correct alternative in the following question:
Associated to a random experiment two events A and B are such that

\[P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ an d }  P\left( A \cup B \right) = \frac{4}{5}\] . The value of P(A) is

Choose the correct alternative in the following question:

\[\text{ If}  P\left( A \right) = \frac{3}{10}, P\left( B \right) = \frac{2}{5} \text{ and } P\left( A \cup B \right) = \frac{3}{5}, \text{ then} P\left( A|B \right) + P\left( B|A \right) \text{ equals } \]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×