Advertisements
Advertisements
Question
Choose the correct alternative in the following question:
\[\text{ If } P\left( A \right) = \frac{2}{5}, P\left( B \right) = \frac{3}{10} \text{ and } P\left( A \cap B \right) = \frac{1}{5}, \text{ then } , P\left( \overline { A }|\overline{ B } \right) P\left( \overline{ B }|\overline{ A } \right) \text{ is equal to } \]
Options
\[ \frac{5}{6} \]
\[\frac{5}{7}\]
\[ \frac{25}{42}\]
1
Solution
\[\text{ We have } , \]
\[P\left( A \right) = \frac{2}{5}, P\left( B \right) = \frac{3}{10} \text{ and } P\left( A \cap B \right) = \frac{1}{5}\]
\[\text{ Also } , P\left( \overline {A} \right) = 1 - P\left( A \right) = 1 - \frac{2}{5} = \frac{5 - 2}{5} = \frac{3}{5} \text{ and } \]
\[P\left( \overline {B} \right) = 1 - P\left( B \right) = 1 - \frac{3}{10} = \frac{10 - 3}{10} = \frac{7}{10}\]
\[\text{ As } , P\left( A \cup B \right) = P\left( A \right) + P\left( B \right) - P\left( A \cap B \right)\]
\[ = \frac{2}{5} + \frac{3}{10} - \frac{1}{5}\]
\[ = \frac{4 + 3 - 2}{10}\]
\[ = \frac{5}{10}\]
\[ = \frac{1}{2}\]
\[\text{ Also } , P\left( \overline {A} \cap\overline { B } \right) = P\left( \overline {A \cup B} \right)\]
\[ = 1 - P\left( A \cup B \right)\]
\[ = 1 - \frac{1}{2}\]
\[ = \frac{1}{2}\]
\[\text{ Now } , \]
\[P\left( \overline {A}|\overline {B} \right) \times P\left( \overline {B}|\overline {A} \right) = \frac{P\left( \overline {A} \cap \overline {B} \right)}{P\left( \overline {B} \right)} \times \frac{P\left(\overline {A} \cap \overline {B} \right)}{P\left( \overline {A} \right)}\]
\[ = \frac{\left( \frac{1}{2} \right)}{\left( \frac{7}{10} \right)} \times \frac{\left( \frac{1}{2} \right)}{\left( \frac{3}{5} \right)}\]
\[ = \frac{10}{2 \times 7} \times \frac{5}{3 \times 2}\]
\[ = \frac{5}{7} \times \frac{5}{6}\]
\[ = \frac{25}{42}\]
APPEARS IN
RELATED QUESTIONS
A and B throw a die alternatively till one of them gets a number greater than four and wins the game. If A starts the game, what is the probability of B winning?
An experiment succeeds thrice as often as it fails. Find the probability that in the next five trials, there will be at least 3 successes.
Assume that each child born is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that (i) the youngest is a girl, (ii) at least one is a girl?
A die is thrown three times, find the probability that 4 appears on the third toss if it is given that 6 and 5 appear respectively on first two tosses.
Compute P (A/B), if P (B) = 0.5 and P (A ∩ B) = 0.32
Two cards are drawn without replacement from a pack of 52 cards. Find the probability that the first is a king and the second is an ace.
An urn contains 3 white, 4 red and 5 black balls. Two balls are drawn one by one without replacement. What is the probability that at least one ball is black?
A bag contains 5 white, 7 red and 3 black balls. If three balls are drawn one by one without replacement, find the probability that none is red.
A box of oranges is inspected by examining three randomly selected oranges drawn without replacement. If all the three oranges are good, the box is approved for sale otherwise it is rejected. Find the probability that a box containing 15 oranges out of which 12 are good and 3 are bad ones will be approved for sale.
If A and B are two events such that \[ P\left( A \right) = \frac{7}{13}, P\left( B \right) = \frac{9}{13} \text{ and } P\left( A \cap B \right) = \frac{4}{13}, \text{ then find } P\left( \overline{ A }|B \right) . \]
If P (A) = \[\frac{6}{11},\] P (B) = \[\frac{5}{11}\] and P (A ∪ B) = \[\frac{7}{11},\] find
Two coins are tossed once. Find P (A/B) in each of the following:
A = No tail appears, B = No head appears.
A pair of dice is thrown. Find the probability of getting 7 as the sum, if it is known that the second die always exhibits an odd number.
A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent?
A = The card drawn is a king or queen, B = the card drawn is a queen or jack.
A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent?
B = the card drawn is a spade, B = the card drawn in an ace.
A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. B and C .
If A and B be two events such that P (A) = 1/4, P (B) = 1/3 and P (A ∪ B) = 1/2, show that A and B are independent events.
A die is tossed twice. Find the probability of getting a number greater than 3 on each toss.
An article manufactured by a company consists of two parts X and Y. In the process of manufacture of the part X, 9 out of 100 parts may be defective. Similarly, 5 out of 100 are likely to be defective in the manufacture of part Y. Calculate the probability that the assembled product will not be defective.
The odds against a certain event are 5 to 2 and the odds in favour of another event, independent to the former are 6 to 5. Find the probability that (i) at least one of the events will occur, and (ii) none of the events will occur.
An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting 2 red balls.
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: (1 - p1)p2
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: `1 - (1 - p_1 )(1 -p_2 ) `
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: p1 + p2 - 2p1p2
Tickets are numbered from 1 to 10. Two tickets are drawn one after the other at random. Find the probability that the number on one of the tickets is a multiple of 5 and on the other a multiple of 4.
An unbiased coin is tossed. If the result is a head, a pair of unbiased dice is rolled and the sum of the numbers obtained is noted. If the result is a tail, a card from a well shuffled pack of eleven cards numbered 2, 3, 4, ..., 12 is picked and the number on the card is noted. What is the probability that the noted number is either 7 or 8?
If A and B are two independent events such that P (A) = 0.3 and P (A ∪ \[B\]) = 0.8. Find P (B).
If P (A) = 0.3, P (B) = 0.6, P (B/A) = 0.5, find P (A ∪ B).
If A and B are independent events, then write expression for P(exactly one of A, B occurs).
The probabilities of a student getting I, II and III division in an examination are \[\frac{1}{10}, \frac{3}{5}\text{ and } \frac{1}{4}\]respectively. The probability that the student fails in the examination is
The probability that a leap year will have 53 Fridays or 53 Saturdays is
A coin is tossed three times. If events A and B are defined as A = Two heads come, B = Last should be head. Then, A and B are ______.
A bag contains 5 brown and 4 white socks. A man pulls out two socks. The probability that these are of the same colour is
Choose the correct alternative in the following question:
\[\text{ If} P\left( A \right) = \frac{3}{10}, P\left( B \right) = \frac{2}{5} \text{ and } P\left( A \cup B \right) = \frac{3}{5}, \text{ then} P\left( A|B \right) + P\left( B|A \right) \text{ equals } \]
Mark the correct alternative in the following question:
\[\text{ If } P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ and } P\left( A \cup B \right) = \frac{4}{5}, \text{ then } P\left( B|\overline{ A } \right) = \]
Mark the correct alternative in the following question:
\[\text{ If A and B are two events such that} P\left( A \right) \neq 0 \text{ and } P\left( B \right) \neq 1,\text{ then } P\left( \overline{ A }|\overline{ B }\right) = \]
Mark the correct alternative in the following question:
\[\text{ If A and B are two independent events such that} P\left( A \right) = 0 . 3 \text{ and } P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( A|B \right) - P\left( B|A \right) = \]
If two events A and B are such that P (A)
\[\left( \overline{ A } \right)\] = 0.3, P (B) = 0.4 and P (A ∩ B) = 0.5, find P \[\left( B/\overline{ A }\cap \overline{ B } \right)\].