Advertisements
Advertisements
Question
A bag contains 5 brown and 4 white socks. A man pulls out two socks. The probability that these are of the same colour is
Options
\[\frac{5}{108}\]
\[\frac{18}{108}\]
\[\frac{30}{108}\]
\[\frac{48}{108}\]
Solution
\[ \frac{48}{108}\]
\[P\left( \text{ same coloured socks }\right) = P\left( \text{ both brown } \right) + P\left( \text{ both white } \right)\]
\[ = \frac{5}{9} \times \frac{4}{8} + \frac{4}{9} \times \frac{3}{8}\]
\[ = \frac{20}{72} + \frac{12}{72}\]
\[ = \frac{32}{72}\]
\[ = \frac{4}{9} = \frac{48}{108}^{}\]
APPEARS IN
RELATED QUESTIONS
A and B throw a pair of dice alternately, till one of them gets a total of 10 and wins the game. Find their respective probabilities of winning, if A starts first
Ten cards numbered 1 through 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3, what is the probability that it is an even number?
If P (A) = 0.4, P (B) = 0.3 and P (B/A) = 0.5, find P (A ∩ B) and P (A/B).
Find the chance of drawing 2 white balls in succession from a bag containing 5 red and 7 white balls, the ball first drawn not being replaced.
Two cards are drawn without replacement from a pack of 52 cards. Find the probability that the first is a king and the second is an ace.
A card is drawn from a well-shuffled deck of 52 cards and then a second card is drawn. Find the probability that the first card is a heart and the second card is a diamond if the first card is not replaced.
Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that first two cards are kings and third card drawn is an ace?
If A and B are two events such that\[ P\left( A \right) = \frac{6}{11}, P\left( B \right) = \frac{5}{11} \text{ and } P\left( A \cup B \right) = \frac{7}{11}, \text{ then find } P\left( A \cap B \right), P\left( A|B \right) \text { and } P\left( B|A \right) . \]
If A and B are two events such that
\[ P\left( A \right) = \frac{1}{2}, P\left( B \right) = \frac{1}{3} \text{ and } P\left( A \cap B \right) = \frac{1}{4}, \text{ then find } P\left( A|B \right), P\left( B|A \right), P\left( \overline{ A }|B \right) \text{ and } P\left( \overline{ A }|\overline{ B } \right) .\]
A pair of dice is thrown. Find the probability of getting 7 as the sum if it is known that the second die always exhibits a prime number.
A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?
A = the number of heads is two, B = the last throw results in head.
If A and B are two independent events such that P (`bar A` ∩ B) = 2/15 and P (A ∩`bar B` ) = 1/6, then find P (B).
Given the probability that A can solve a problem is 2/3 and the probability that B can solve the same problem is 3/5. Find the probability that none of the two will be able to solve the problem.
The probability that A hits a target is 1/3 and the probability that B hits it, is 2/5, What is the probability that the target will be hit, if each one of A and B shoots at the target?
The probabilities of two students A and B coming to the school in time are \[\frac{3}{7}\text { and }\frac{5}{7}\] respectively. Assuming that the events, 'A coming in time' and 'B coming in time' are independent, find the probability of only one of them coming to the school in time. Write at least one advantage of coming to school in time.
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: p1 + p2 - 2p1p2
Two cards are drawn successively without replacement from a well-shuffled deck of 52 cards. Find the probability of exactly one ace.
A bag contains 4 white, 7 black and 5 red balls. 4 balls are drawn with replacement. What is the probability that at least two are white?
A can hit a target 3 times in 6 shots, B : 2 times in 6 shots and C : 4 times in 4 shots. They fix a volley. What is the probability that at least 2 shots hit?
X is taking up subjects - Mathematics, Physics and Chemistry in the examination. His probabilities of getting grade A in these subjects are 0.2, 0.3 and 0.5 respectively. Find the probability that he gets
(i) Grade A in all subjects
(ii) Grade A in no subject
(iii) Grade A in two subjects.
An urn contains 7 red and 4 blue balls. Two balls are drawn at random with replacement. Find the probability of getting
(i) 2 red balls
(ii) 2 blue balls
(iii) One red and one blue ball.
A purse contains 2 silver and 4 copper coins. A second purse contains 4 silver and 3 copper coins. If a coin is pulled at random from one of the two purses, what is the probability that it is a silver coin?
The contents of three bags I, II and III are as follows:
Bag I : 1 white, 2 black and 3 red balls,
Bag II : 2 white, 1 black and 1 red ball;
Bag III : 4 white, 5 black and 3 red balls.
A bag is chosen at random and two balls are drawn. What is the probability that the balls are white and red?
A four digit number is formed using the digits 1, 2, 3, 5 with no repetitions. Write the probability that the number is divisible by 5.
Write the probability that a number selected at random from the set of first 100 natural numbers is a cube.
If A and B are independent events such that P(A) = p, P(B) = 2p and P(Exactly one of Aand B occurs) = \[\frac{5}{9}\], then find the value of p.
India play two matches each with West Indies and Australia. In any match the probabilities of India getting 0,1 and 2 points are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is
A person writes 4 letters and addresses 4 envelopes. If the letters are placed in the envelopes at random, then the probability that all letters are not placed in the right envelopes, is
Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is
Two dice are thrown simultaneously. The probability of getting a pair of aces is
Mark the correct alternative in the following question:
\[ \text{ If } P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ and } P\left( \overline{A \cup B }\right) = \frac{4}{5}, \text{ then } P\left( \overline{ A } \cup B \right) + P\left( A \cup B \right) = \]
Mark the correct alternative in the following question:
\[\text{ If } P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ and } P\left( A \cup B \right) = \frac{4}{5}, \text{ then } P\left( B|\overline{ A } \right) = \]
Mark the correct alternative in the following question:A flash light has 8 batteries out of which 3 are dead. If two batteries are selected without replacement and tested, then the probability that both are dead is
Mark the correct alternative in the following question:
In a college 30% students fail in Physics, 25% fail in Mathematics and 10% fail in both. One student is chosen at random. The probability that she fails in Physics if she failed in Mathematics is
Mark the correct alternative in the following question:
A box contains 3 orange balls, 3 green balls and 2 blue balls. Three balls are drawn at random from the box without replacement. The probability of drawing 2 green balls and one blue ball is
Mother, father and son line up at random for a family photo. If A and B are two events given by
A = Son on one end, B = Father in the middle, find P(B / A).
A coin is tossed 5 times. Find the probability of getting (i) at least 4 heads, and (ii) at most 4 heads.
There are two boxes I and II. Box I contains 3 red and 6 Black balls. Box II contains 5 red and black balls. One of the two boxes, box I and box II is selected at random and a ball is drawn at random. The ball drawn is found to be red. If the probability that this red ball comes out from box II is ' a find the value of n