English

A Box Contains 6 Nails and 10 Nuts. Half of the Nails and Half of the Nuts Are Rusted. If One Item is Chosen at Random, the Probability that It is Rusted Or is a Nail is - Mathematics

Advertisements
Advertisements

Question

A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that it is rusted or is a nail is

Options

  • \[\frac{3}{16}\]

     
  • \[\frac{5}{16}\]

     
  • \[\frac{11}{16}\]

     
  •  \[\frac{14}{16}\]

     
MCQ

Solution

\[\frac{11}{16}\]

\[\text{ Rusted items } =3+5=8\]
\[\text{ Rusted nails } = 3\]
\[\text{ Total nails } = 6\]
\[P\left( \text{ getting a rusted item or a nail } \right) = P\left( \text{ getting a rusted item }  \right) + P\left( \text{ getting a nail } \right) - P\left( \text{ getting a rusted item and a nail } \right)\]
\[ = \frac{8}{16} + \frac{6}{16} - \frac{3}{16}\]
\[ = \frac{8 + 6 - 3}{16}\]
\[ = \frac{11}{16}\]

shaalaa.com
Probability Examples and Solutions
  Is there an error in this question or solution?
Chapter 31: Probability - MCQ [Page 105]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 31 Probability
MCQ | Q 18 | Page 105

RELATED QUESTIONS

A and B throw a die alternatively till one of them gets a number greater than four and wins the game. If A starts the game, what is the probability of B winning?


How many times must a fair coin be tossed so that the probability of getting at least one head is more than 80%?


An experiment succeeds thrice as often as it fails. Find the probability that in the next five trials, there will be at least 3 successes.


If A and B are two events such that P (A) = \[\frac{1}{3},\] P (B) = \[\frac{1}{5}\] and P (A ∪ B) = \[\frac{11}{30}\] , find P (A/B) and P (B/A).

 
 
 

A couple has two children. Find the probability that both the children are (i) males, if it is known that at least one of the children is male. (ii) females, if it is known that the elder child is a female.


From a pack of 52 cards, 4 are drawn one by one without replacement. Find the probability that all are aces(or kings).

 

Three cards are drawn successively, without replacement from a pack of 52 well shuffled cards. What is the probability that first two cards are kings and third card drawn is an ace?


If A and B are two events such that \[ P\left( A \right) = \frac{1}{3}, P\left( B \right) = \frac{1}{4} \text{ and }  P\left( A \cup B \right) = \frac{5}{12}, \text{ then find }  P\left( A|B \right) \text{ and }  P\left( B|A \right) . \]


A coin is tossed three times. Find P (A/B) in each of the following:

A = At least two heads, B = At most two heads


A die is thrown three times. Find P (A/B) and P (B/A), if
A = 4 appears on the third toss, B = 6 and 5 appear respectively on first two tosses.


A pair of dice is thrown. Find the probability of getting 7 as the sum, if it is known that the second die always exhibits an odd number.


Find the probability that the sum of the numbers showing on two dice is 8, given that at least one die does not show five.


Two dice are thrown and it is known that the first die shows a 6. Find the probability that the sum of the numbers showing on two dice is 7.


Ten cards numbered 1 through 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3, what is the probability that it is an even number?


An article manufactured by a company consists of two parts X and Y. In the process of manufacture of the part X, 9 out of 100 parts may be defective. Similarly, 5 out of 100 are likely to be defective in the manufacture of part Y. Calculate the probability that the assembled product will not be defective.


The probabilities of two students A and B coming to the school in time are \[\frac{3}{7}\text { and }\frac{5}{7}\] respectively. Assuming that the events, 'A coming in time' and 'B coming in time' are independent, find the probability of only one of them coming to the school in time. Write at least one advantage of coming to school in time.

 

A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that only one of them will be selected ?

 


A bag contains 4 white, 7 black and 5 red balls. 4 balls are drawn with replacement. What is the probability that at least two are white?

 

Fatima and John appear in an interview for two vacancies for the same post. The probability of Fatima's selection is \[\frac{1}{7}\]  and that of John's selection is \[\frac{1}{5}\] What is the probability that
(i) both of them will be selected?
(ii) only one of them will be selected?
(iii) none of them will be selected?


Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among 100 students, what is the probability that: (i) you both enter the same section? (ii) you both enter the different sections?


A and B throw a pair of dice alternately. A wins the game if he gets a total of 7 and B wins the game if he gets a total of 10. If A starts the game, then find the probability that B wins.


A bag A contains 5 white and 6 black balls. Another bag B contains 4 white and 3 black balls. A ball is transferred from bag A to the bag B and then a ball is taken out of the second bag. Find the probability of this ball being black.


A bag contains 4 white and 5 black balls and another bag contains 3 white and 4 black balls. A ball is taken out from the first bag and without seeing its colour is put in the second bag. A ball is taken out from the latter. Find the probability that the ball drawn is white.


A ordinary cube has four plane faces, one face marked 2 and another face marked 3, find the probability of getting a total of 7 in 5 throws.


An unbiased die with face marked 1, 2, 3, 4, 5, 6 is rolled four times. Out of 4 face values obtained, find the probability that the minimum face value is not less than 2 and the maximum face value is not greater than 5.


The probabilities of a student getting I, II and III division in an examination are  \[\frac{1}{10}, \frac{3}{5}\text{ and } \frac{1}{4}\]respectively. The probability that the student fails in the examination is

 

India play two matches each with West Indies and Australia. In any match the probabilities of India getting 0,1 and 2 points are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is


A coin is tossed three times. If events A and B are defined as A = Two heads come, B = Last should be head. Then, A and B are ______.


A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is


If S is the sample space and P (A) = \[\frac{1}{3}\]P (B) and S = A ∪ B, where A and B are two mutually exclusive events, then P (A) =


If P (A ∪ B) = 0.8 and P (A ∩ B) = 0.3, then P \[\left( A \right)\] \[\left( A \right)\] + P \[\left( B \right)\] =


Mark the correct alternative in the following question:

If A and B are two events such that P(A) = \[\frac{4}{5}\] , and \[P\left( A \cap B \right) = \frac{7}{10}\] , then P(B|A) =


Choose the correct alternative in the following question:
If A and B are two events associated to a random experiment such that \[P\left( A \cap B \right) = \frac{7}{10} \text{ and } P\left( B \right) = \frac{17}{20}\] , then P(A|B) = 


Mark the correct alternative in the following question:

\[\text{ If A and B are two events such that } P\left( A \right) = \frac{1}{2}, P\left( B \right) = \frac{1}{3}, P\left( A|B \right) = \frac{1}{4}, \text{ then } P\left( A \cap B \right) \text{ equals} \]


Mark the correct alternative in the following question:

\[\text{ If} P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 8 \text{ and } P\left( B|A \right) = 0 . 6, \text{ then } P\left( A \cup B \right) = \]


Mark the correct alternative in the following question:

\[\text{ If A and B are two events such that } P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 3 \text{ and }  P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( B \cap A \right) \text{ equals } \]


Mark the correct alternative in the following question:

\[\text{ If the events A and B are independent, then }  P\left( A \cap B \right) \text{ is equal to } \]


Mark the correct alternative in the following question:
If two events are independent, then


Mark the correct alternative in the following question:
Two dice are thrown. If it is known that the sum of the numbers on the dice was less than 6, then the probability of getting a sum 3, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×