English

Fatima and John Appear in an Interview for Two Vacancies for the Same Post. the Probability of Fatima'S Selection is 1 7 and that of John'S Selection is 1 5 What is the Probability that - Mathematics

Advertisements
Advertisements

Question

Fatima and John appear in an interview for two vacancies for the same post. The probability of Fatima's selection is \[\frac{1}{7}\]  and that of John's selection is \[\frac{1}{5}\] What is the probability that
(i) both of them will be selected?
(ii) only one of them will be selected?
(iii) none of them will be selected?

Sum

Solution

\[P\left( \text{ Fatima gets selected } \right) = P\left( A \right) = \frac{1}{7}\]

\[P\left( \text{ John gets selected } \right) = P\left( B \right) = \frac{1}{5}\]

\[\left( i \right) P\left( \text{ both of them get selected}  \right) = P\left( A \cap B \right)\]

\[ = P\left( A \right) \times P\left( B \right)\]

\[ = \frac{1}{7} \times \frac{1}{5} = \frac{1}{35}\]

\[\left( ii \right) P\left( \text{ only one of them gets selected }  \right) = P\left( A \right) \times P\left( \bar{B} \right) + P\left( \bar{A} \right) \times P\left( B \right)\]

\[ = \frac{1}{7}\left( 1 - \frac{1}{5} \right) + \left( 1 - \frac{1}{7} \right)\frac{1}{5}\]

\[ = \frac{1}{7} \times \frac{4}{5} + \frac{6}{7} \times \frac{1}{5}\]

\[ = \frac{4}{35} + \frac{6}{35}\]

\[ = \frac{10}{35} = \frac{2}{7}\]

\[\left( iii \right) P\left( \text{ none of them get selected }   \right) = P\left( \bar{B} \right) \times P\left( \bar{A} \right)\]

\[ = \left( 1 - \frac{1}{5} \right) \times \left( 1 - \frac{1}{7} \right)\]

\[ = \frac{4}{5} \times \frac{6}{7}\]

\[ = \frac{24}{35}\]

shaalaa.com
Probability Examples and Solutions
  Is there an error in this question or solution?
Chapter 31: Probability - Exercise 31.5 [Page 70]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 31 Probability
Exercise 31.5 | Q 30 | Page 70

RELATED QUESTIONS

In a shop X, 30 tins of pure ghee and 40 tins of adulterated ghee which look alike, are kept for sale while in shop Y, similar 50 tins of pure ghee and 60 tins of adulterated ghee are there. One tin of ghee is purchased from one of the randomly selected shops and is found to be adulterated. Find the probability that it is purchased from shop Y. What measures should be taken to stop adulteration?


Bag A contains 3 red and 5 black balls, while bag B contains 4 red and 4 black balls. Two balls are transferred at random from bag A to bag B and then a ball is drawn from bag B at random. If the ball drawn from bag B is found to be red find the probability that two red balls were transferred from A to B.


A die is thrown three times, find the probability that 4 appears on the third toss if it is given that 6 and 5 appear respectively on first two tosses.


If P (A) = 0.4, P (B) = 0.3 and P (B/A) = 0.5, find P (A ∩ B) and P (A/B).

 

A card is drawn from a well-shuffled deck of 52 cards and then a second card is drawn. Find the probability that the first card is a heart and the second card is a diamond if the first card is not replaced.


A box of oranges is inspected by examining three randomly selected oranges drawn without replacement. If all the three oranges are good, the box is approved for sale otherwise it is rejected. Find the probability that a box containing 15 oranges out of which 12 are good and 3 are bad ones will be approved for sale.


If P (A) = 0.4, P (B) = 0.8, P (B/A) = 0.6. Find P (A/B) and P (A ∪ B).

 

If A and B are two events such that\[ P\left( A \right) = \frac{6}{11}, P\left( B \right) = \frac{5}{11} \text{ and } P\left( A \cup B \right) = \frac{7}{11}, \text{ then find } P\left( A \cap B \right), P\left( A|B \right) \text { and } P\left( B|A \right) . \]


A coin is tossed three times. Find P (A/B) in each of the following:

A = At least two heads, B = At most two heads


Two coins are tossed once. Find P (A/B) in each of the following:
A = Tail appears on one coin, B = One coin shows head.


A die is thrown three times. Find P (A/B) and P (B/A), if
A = 4 appears on the third toss, B = 6 and 5 appear respectively on first two tosses.


The probability that a certain person will buy a shirt is 0.2, the probability that he will buy a trouser is 0.3, and the probability that he will buy a shirt given that he buys a trouser is 0.4. Find the probability that he will buy both a shirt and a trouser. Find also the probability that he will buy a trouser given that he buys a shirt.


A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?

A = the number of heads is two, B = the last throw results in head.


A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent?

A = the card drawn is black, B = the card drawn is a king.


A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. B and C .


Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find \[P \overline A \cup \overline B \] .


Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (A ∪ B).


If A and B are two independent events such that P (A ∪ B) = 0.60 and P (A) = 0.2, find P(B).


An unbiased die is tossed twice. Find the probability of getting 4, 5, or 6 on the first toss and 1, 2, 3 or 4 on the second toss.


A bag contains 3 red and 2 black balls. One ball is drawn from it at random. Its colour is noted and then it is put back in the bag. A second draw is made and the same procedure is repeated. Find the probability of drawing (i) two red balls, (ii) two black balls, (iii) first red and second black ball.


An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting 2 red balls.  


An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting 2 blue balls. 


A bag contains 3 red and 5 black balls and a second bag contains 6 red and 4 black balls. A ball is drawn from each bag. Find the probability that one is red and the other is black.


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that one of them is black and other is red.


A bag contains 4 red and 5 black balls, a second bag contains 3 red and 7 black balls. One ball is drawn at random from each bag, find the probability that the (i) balls are of different colours (ii) balls are of the same colour.


There are 3 red and 5 black balls in bag 'A'; and 2 red and 3 black balls in bag 'B'. One ball is drawn from bag 'A' and two from bag 'B'. Find the probability that out of the 3 balls drawn one is red and 2 are black.

 

The bag A contains 8 white and 7 black balls while the bag B contains 5 white and 4 black balls. One ball is randomly picked up from the bag A and mixed up with the balls in bag B. Then a ball is randomly drawn out from it. Find the probability that ball drawn is white.


A bag contains 4 white and 5 black balls and another bag contains 3 white and 4 black balls. A ball is taken out from the first bag and without seeing its colour is put in the second bag. A ball is taken out from the latter. Find the probability that the ball drawn is white.


An urn contains 10 white and 3 black balls. Another urn contains 3 white and 5 black balls. Two are drawn from first urn and put into the second urn and then a ball is drawn from the latter. Find the probability that its is a white ball.


If A and B are two independent events, then write P (A ∩ \[B\] ) in terms of P (A) and P (B).

 
 

If AB and C are independent events such that P(A) = P(B) = P(C) = p, then find the probability of occurrence of at least two of AB and C.


A speaks truth in 75% cases and B speaks truth in 80% cases. Probability that they contradict each other in a statement, is


If S is the sample space and P (A) = \[\frac{1}{3}\]P (B) and S = A ∪ B, where A and B are two mutually exclusive events, then P (A) =


Mark the correct alternative in the following question:

\[ \text{ If }  P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ and }  P\left( \overline{A \cup B }\right) = \frac{4}{5}, \text{ then }  P\left( \overline{ A } \cup B \right) + P\left( A \cup B \right) = \]


Mark the correct alternative in the following question:
A box contains 3 orange balls, 3 green balls and 2 blue balls. Three balls are drawn at random from the box without replacement. The probability of drawing 2 green balls and one blue ball is


If two events A and B are such that P (A)

 \[\left( \overline{ A } \right)\] = 0.3, P (B) = 0.4 and P (A ∩ B) = 0.5, find P \[\left( B/\overline{ A }\cap \overline{ B } \right)\]. 


Refer to Question 6. Calculate the probability that the defective tube was produced on machine E1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×