Advertisements
Advertisements
Question
Mark the correct alternative in the following question:
In a college 30% students fail in Physics, 25% fail in Mathematics and 10% fail in both. One student is chosen at random. The probability that she fails in Physics if she failed in Mathematics is
Options
\[ \frac{1}{10}\]
\[\frac{1}{3}\]
\[ \frac{2}{5} \]
\[ \frac{9}{20}\]
Solution
\[\text{ Let A be the event of choosing a student failed in Physics and } \]
\[\text{ B be the event of choosing a student failed in Mathematics } . \]
\[\text{ We have } , \]
\[P\left( A \right) = 30 % = \frac{30}{100} = \frac{3}{10}, \]
\[P\left( B \right) = 25 % = \frac{25}{100} = \frac{1}{4} and\]
\[P\left( A \cap B \right) = 10 % = \frac{10}{100} = \frac{1}{10}\]
\[\text{ Now } , \]
\[P\left( A|B \right) = \frac{P\left( A \cap B \right)}{P\left( B \right)}\]
\[ = \frac{\left( \frac{1}{10} \right)}{\left( \frac{1}{4} \right)}\]
\[ = \frac{4}{10}\]
\[ = \frac{2}{5}\]
APPEARS IN
RELATED QUESTIONS
In a shop X, 30 tins of pure ghee and 40 tins of adulterated ghee which look alike, are kept for sale while in shop Y, similar 50 tins of pure ghee and 60 tins of adulterated ghee are there. One tin of ghee is purchased from one of the randomly selected shops and is found to be adulterated. Find the probability that it is purchased from shop Y. What measures should be taken to stop adulteration?
Compute P (A/B), if P (B) = 0.5 and P (A ∩ B) = 0.32
If A and B are two events such that P (A) = \[\frac{1}{3},\] P (B) = \[\frac{1}{5}\] and P (A ∪ B) = \[\frac{11}{30}\] , find P (A/B) and P (B/A).
From a pack of 52 cards, 4 are drawn one by one without replacement. Find the probability that all are aces(or kings).
Two cards are drawn without replacement from a pack of 52 cards. Find the probability that the first is a heart and second is red.
If A and B are two events such that P (A ∩ B) = 0.32 and P (B) = 0.5, find P (A/B).
If P (A) = 0.4, P (B) = 0.8, P (B/A) = 0.6. Find P (A/B) and P (A ∪ B).
If A and B are two events such that
\[ P\left( A \right) = \frac{1}{2}, P\left( B \right) = \frac{1}{3} \text{ and } P\left( A \cap B \right) = \frac{1}{4}, \text{ then find } P\left( A|B \right), P\left( B|A \right), P\left( \overline{ A }|B \right) \text{ and } P\left( \overline{ A }|\overline{ B } \right) .\]
Two coins are tossed once. Find P (A/B) in each of the following:
A = Tail appears on one coin, B = One coin shows head.
Mother, father and son line up at random for a family picture. If A and B are two events given by A = Son on one end, B = Father in the middle, find P (A/B) and P (B/A).
Two numbers are selected at random from integers 1 through 9. If the sum is even, find the probability that both the numbers are odd.
A pair of dice is thrown. Let E be the event that the sum is greater than or equal to 10 and F be the event "5 appears on the first-die". Find P (E/F). If F is the event "5 appears on at least one die", find P (E/F).
The probability that a certain person will buy a shirt is 0.2, the probability that he will buy a trouser is 0.3, and the probability that he will buy a shirt given that he buys a trouser is 0.4. Find the probability that he will buy both a shirt and a trouser. Find also the probability that he will buy a trouser given that he buys a shirt.
If P (not B) = 0.65, P (A ∪ B) = 0.85, and A and B are independent events, then find P (A).
A and B are two independent events. The probability that A and B occur is 1/6 and the probability that neither of them occurs is 1/3. Find the probability of occurrence of two events.
Given the probability that A can solve a problem is 2/3 and the probability that B can solve the same problem is 3/5. Find the probability that none of the two will be able to solve the problem.
The probability that A hits a target is 1/3 and the probability that B hits it, is 2/5, What is the probability that the target will be hit, if each one of A and B shoots at the target?
An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting 2 blue balls.
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: p1 + p2 - 2p1p2
A bag contains 3 red and 5 black balls and a second bag contains 6 red and 4 black balls. A ball is drawn from each bag. Find the probability that one is red and the other is black.
Tickets are numbered from 1 to 10. Two tickets are drawn one after the other at random. Find the probability that the number on one of the tickets is a multiple of 5 and on the other a multiple of 4.
In a family, the husband tells a lie in 30% cases and the wife in 35% cases. Find the probability that both contradict each other on the same fact.
A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that only one of them will be selected ?
A bag contains 7 white, 5 black and 4 red balls. Four balls are drawn without replacement. Find the probability that at least three balls are black.
A bag contains 3 white and 2 black balls and another bag contains 2 white and 4 black balls. One bag is chosen at random. From the selected bag, one ball is drawn. Find the probability that the ball drawn is white.
A factory has two machines A and B. Past records show that the machine A produced 60% of the items of output and machine B produced 40% of the items. Further 2% of the items produced by machine A were defective and 1% produced by machine B were defective. If an item is drawn at random, what is the probability that it is defective?
One bag contains 4 white and 5 black balls. Another bag contains 6 white and 7 black balls. A ball is transferred from first bag to the second bag and then a ball is drawn from the second bag. Find the probability that the ball drawn is white.
In a competition A, B and C are participating. The probability that A wins is twice that of B, the probability that B wins is twice that of C. Find the probability that A losses.
If A, B, C are mutually exclusive and exhaustive events associated to a random experiment, then write the value of P (A) + P (B) + P (C).
Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is
A bag X contains 2 white and 3 black balls and another bag Y contains 4 white and 2 black balls. One bag is selected at random and a ball is drawn from it. Then, the probability chosen to be white is
Choose the correct alternative in the following question:
\[\text{ If } P\left( A \right) = \frac{2}{5}, P\left( B \right) = \frac{3}{10} \text{ and } P\left( A \cap B \right) = \frac{1}{5}, \text{ then } , P\left( \overline { A }|\overline{ B } \right) P\left( \overline{ B }|\overline{ A } \right) \text{ is equal to } \]
Mark the correct alternative in the following question:
\[\text{ If} P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 8 \text{ and } P\left( B|A \right) = 0 . 6, \text{ then } P\left( A \cup B \right) = \]
Mark the correct alternative in the following question:
\[\text{ If } P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ and } P\left( A \cup B \right) = \frac{4}{5}, \text{ then } P\left( B|\overline{ A } \right) = \]
Mark the correct alternative in the following question:
\[\text{ If A and B are two independent events with } P\left( A \right) = \frac{3}{5} \text{ and } P\left( B \right) = \frac{4}{9}, \text{ then } P\left( \overline{A} \cap B \right) \text{ equals } \]
Mark the correct alternative in the following question:
\[\text{ If A and B are two independent events such that} P\left( A \right) = 0 . 3 \text{ and } P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( A|B \right) - P\left( B|A \right) = \]