Advertisements
Advertisements
प्रश्न
Mark the correct alternative in the following question:
In a college 30% students fail in Physics, 25% fail in Mathematics and 10% fail in both. One student is chosen at random. The probability that she fails in Physics if she failed in Mathematics is
विकल्प
\[ \frac{1}{10}\]
\[\frac{1}{3}\]
\[ \frac{2}{5} \]
\[ \frac{9}{20}\]
उत्तर
\[\text{ Let A be the event of choosing a student failed in Physics and } \]
\[\text{ B be the event of choosing a student failed in Mathematics } . \]
\[\text{ We have } , \]
\[P\left( A \right) = 30 % = \frac{30}{100} = \frac{3}{10}, \]
\[P\left( B \right) = 25 % = \frac{25}{100} = \frac{1}{4} and\]
\[P\left( A \cap B \right) = 10 % = \frac{10}{100} = \frac{1}{10}\]
\[\text{ Now } , \]
\[P\left( A|B \right) = \frac{P\left( A \cap B \right)}{P\left( B \right)}\]
\[ = \frac{\left( \frac{1}{10} \right)}{\left( \frac{1}{4} \right)}\]
\[ = \frac{4}{10}\]
\[ = \frac{2}{5}\]
APPEARS IN
संबंधित प्रश्न
A and B throw a pair of dice alternately, till one of them gets a total of 10 and wins the game. Find their respective probabilities of winning, if A starts first
Ten cards numbered 1 through 10 are placed in a box, mixed up thoroughly and then one card is drawn randomly. If it is known that the number on the drawn card is more than 3, what is the probability that it is an even number?
A coin is tossed three times, if head occurs on first two tosses, find the probability of getting head on third toss.
Two cards are drawn without replacement from a pack of 52 cards. Find the probability that the first is a heart and second is red.
A bag contains 5 white, 7 red and 3 black balls. If three balls are drawn one by one without replacement, find the probability that none is red.
If A and B are two events such that P (A ∩ B) = 0.32 and P (B) = 0.5, find P (A/B).
If P (A) = 0.4, P (B) = 0.8, P (B/A) = 0.6. Find P (A/B) and P (A ∪ B).
If A and B are two events such that 2 P (A) = P (B) = \[\frac{5}{13}\] and P (A/B) = \[\frac{2}{5},\] find P (A ∪ B).
A coin is tossed three times. Find P (A/B) in each of the following:
A = At least two heads, B = At most two heads
Two dice are thrown. Find the probability that the numbers appeared has the sum 8, if it is known that the second die always exhibits 4.
A die is rolled. If the outcome is an odd number, what is the probability that it is prime?
Find the probability that the sum of the numbers showing on two dice is 8, given that at least one die does not show five.
A pair of dice is thrown. Let E be the event that the sum is greater than or equal to 10 and F be the event "5 appears on the first-die". Find P (E/F). If F is the event "5 appears on at least one die", find P (E/F).
If A and B be two events such that P (A) = 1/4, P (B) = 1/3 and P (A ∪ B) = 1/2, show that A and B are independent events.
A bag contains 6 black and 3 white balls. Another bag contains 5 black and 4 white balls. If one ball is drawn from each bag, find the probability that these two balls are of the same colour.
Kamal and Monica appeared for an interview for two vacancies. The probability of Kamal's selection is 1/3 and that of Monika's selection is 1/5. Find the probability that
(i) both of them will be selected
(ii) none of them will be selected
(iii) at least one of them will be selected
(iv) only one of them will be selected.
In a family, the husband tells a lie in 30% cases and the wife in 35% cases. Find the probability that both contradict each other on the same fact.
A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that both of them will be selected ?
A bag contains 4 white, 7 black and 5 red balls. 4 balls are drawn with replacement. What is the probability that at least two are white?
One bag contains 4 yellow and 5 red balls. Another bag contains 6 yellow and 3 red balls. A ball is transferred from the first bag to the second bag and then a ball is drawn from the second bag. Find the probability that ball drawn is yellow.
The bag A contains 8 white and 7 black balls while the bag B contains 5 white and 4 black balls. One ball is randomly picked up from the bag A and mixed up with the balls in bag B. Then a ball is randomly drawn out from it. Find the probability that ball drawn is white.
One bag contains 4 white and 5 black balls. Another bag contains 6 white and 7 black balls. A ball is transferred from first bag to the second bag and then a ball is drawn from the second bag. Find the probability that the ball drawn is white.
A bag contains 6 red and 8 black balls and another bag contains 8 red and 6 black balls. A ball is drawn from the first bag and without noticing its colour is put in the second bag. A ball is drawn from the second bag. Find the probability that the ball drawn is red in colour.
Three machines E1, E2, E3 in a certain factory produce 50%, 25% and 25%, respectively, of the total daily output of electric bulbs. It is known that 4% of the tubes produced one each of the machines E1 and E2 are defective, and that 5% of those produced on E3 are defective. If one tube is picked up at random from a day's production, then calculate the probability that it is defective.
In a competition A, B and C are participating. The probability that A wins is twice that of B, the probability that B wins is twice that of C. Find the probability that A losses.
If P (A) = 0.3, P (B) = 0.6, P (B/A) = 0.5, find P (A ∪ B).
India play two matches each with West Indies and Australia. In any match the probabilities of India getting 0,1 and 2 points are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is
The probability that a leap year will have 53 Fridays or 53 Saturdays is
Three integers are chosen at random from the first 20 integers. The probability that their product is even is
A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that it is rusted or is a nail is
If S is the sample space and P (A) = \[\frac{1}{3}\]P (B) and S = A ∪ B, where A and B are two mutually exclusive events, then P (A) =
Choose the correct alternative in the following question:
\[\text{ If} P\left( A \right) = \frac{3}{10}, P\left( B \right) = \frac{2}{5} \text{ and } P\left( A \cup B \right) = \frac{3}{5}, \text{ then} P\left( A|B \right) + P\left( B|A \right) \text{ equals } \]
Mark the correct alternative in the following question:
\[ \text{ If } P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ and } P\left( \overline{A \cup B }\right) = \frac{4}{5}, \text{ then } P\left( \overline{ A } \cup B \right) + P\left( A \cup B \right) = \]
Mark the correct alternative in the following question:
\[\text{ If A and B are two independent events with } P\left( A \right) = \frac{3}{5} \text{ and } P\left( B \right) = \frac{4}{9}, \text{ then } P\left( \overline{A} \cap B \right) \text{ equals } \]
Mark the correct alternative in the following question:
If two events are independent, then
Out of 8 outstanding students of a school, in which there are 3 boys and 5 girls, a team of 4 students is to be selected for a quiz competition. Find the probability that 2 boys and 2 girls are selected.