English

Two Balls Are Drawn at Random with Replacement from a Box Containing 10 Black and 8 Red Balls. Find the Probability that Both the Balls Are Red. - Mathematics

Advertisements
Advertisements

Question

Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that both the balls are red.

Sum

Solution

\[\text{ Given : Box } = \left( 10B + 8R \right) \text{ balls } \]
\[ P\left( \text{ both red balls }\right) = \frac{8}{18} \times \frac{8}{18}\]
\[ = \frac{64}{324} = \frac{16}{81}\]

shaalaa.com
Probability Examples and Solutions
  Is there an error in this question or solution?
Chapter 31: Probability - Exercise 31.5 [Page 68]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 31 Probability
Exercise 31.5 | Q 3.1 | Page 68

RELATED QUESTIONS

A and B throw a die alternatively till one of them gets a number greater than four and wins the game. If A starts the game, what is the probability of B winning?


A and B throw a pair of dice alternately, till one of them gets a total of 10 and wins the game. Find their respective probabilities of winning, if A starts first


A die is thrown three times, find the probability that 4 appears on the third toss if it is given that 6 and 5 appear respectively on first two tosses.


From a pack of 52 cards, 4 are drawn one by one without replacement. Find the probability that all are aces(or kings).

 

 If P (A) = \[\frac{7}{13}\], P (B) = \[\frac{9}{13}\]  and P (A ∩ B) = \[\frac{4}{13}\], find P (A/B).

 
 
 
 

If A and B are events such that P (A) = 0.6, P (B) = 0.3 and P (A ∩ B) = 0.2, find P (A/B) and P (B/A).


A coin is tossed three times. Find P (A/B) in each of the following:
A = Heads on third toss, B = Heads on first two tosses.


A dice is thrown twice and the sum of the numbers appearing is observed to be 6. What is the conditional probability that the number 4 has appeared at least once?


Two dice are thrown. Find the probability that the numbers appeared has the sum 8, if it is known that the second die always exhibits 4.


A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent?

A = the card drawn is black, B = the card drawn is a king.


A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. B and C .


A coin is tossed three times. Let the events AB and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. C and A


If A and B be two events such that P (A) = 1/4, P (B) = 1/3 and P (A ∪ B) = 1/2, show that A and B are independent events.


Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (A ∪ B).


Given the probability that A can solve a problem is 2/3 and the probability that B can solve the same problem is 3/5. Find the probability that none of the two will be able to solve the problem.

 

Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that (i) both balls are red, (ii) first ball is black and second is red, (iii) one of them is black and other is red.

 

Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are:  `1 - (1 - p_1 )(1 -p_2 ) `


A bag contains 3 red and 5 black balls and a second bag contains 6 red and 4 black balls. A ball is drawn from each bag. Find the probability that one is red and the other is black.


A and B toss a coin alternately till one of them gets a head and wins the game. If A starts the game, find the probability that B will win the game.


There are three urns A, B, and C. Urn A contains 4 red balls and 3 black balls. urn B contains 5 red balls and 4 black balls. Urn C contains 4 red and 4 black balls. One ball is drawn from each of these urns. What is the probability that 3 balls drawn consists of 2 red balls and a black ball?


X is taking up subjects - Mathematics, Physics and Chemistry in the examination. His probabilities of getting grade A in these subjects are 0.2, 0.3 and 0.5 respectively. Find the probability that he gets
(i) Grade A in all subjects
(ii) Grade A in no subject
(iii) Grade A in two subjects.


Fatima and John appear in an interview for two vacancies for the same post. The probability of Fatima's selection is \[\frac{1}{7}\]  and that of John's selection is \[\frac{1}{5}\] What is the probability that
(i) both of them will be selected?
(ii) only one of them will be selected?
(iii) none of them will be selected?


A bag contains 8 marbles of which 3 are blue and 5 are red. One marble is drawn at random, its colour is noted and the marble is replaced in the bag. A marble is again drawn from the bag and its colour is noted. Find the probability that the marble will be
(i) blue followed by red.
(ii) blue and red in any order.
(iii) of the same colour.


Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among 100 students, what is the probability that: (i) you both enter the same section? (ii) you both enter the different sections?


A and B throw a pair of dice alternately. A wins the game if he gets a total of 7 and B wins the game if he gets a total of 10. If A starts the game, then find the probability that B wins.


One bag contains 4 white and 5 black balls. Another bag contains 6 white and 7 black balls. A ball is transferred from first bag to the second bag and then a ball is drawn from the second bag. Find the probability that the ball drawn is white.


An urn contains 10 white and 3 black balls. Another urn contains 3 white and 5 black balls. Two are drawn from first urn and put into the second urn and then a ball is drawn from the latter. Find the probability that its is a white ball.


If P (A) = 0.3, P (B) = 0.6, P (B/A) = 0.5, find P (A ∪ B).

 

If A and B are independent events, then write expression for P(exactly one of AB occurs).


If A and B are independent events such that P(A) = p, P(B) = 2p and P(Exactly one of Aand B occurs) =  \[\frac{5}{9}\], then find the value of p.


Two dice are thrown simultaneously. The probability of getting a pair of aces is


A coin is tossed three times. If events A and B are defined as A = Two heads come, B = Last should be head. Then, A and B are ______.


A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is


If P (A ∪ B) = 0.8 and P (A ∩ B) = 0.3, then P \[\left( A \right)\] \[\left( A \right)\] + P \[\left( B \right)\] =


Two persons A and B take turns in throwing a pair of dice. The first person to throw 9 from both dice will be awarded the prize. If A throws first, then the probability that Bwins the game is


Mark the correct alternative in the following question:

\[\text{ If the events A and B are independent, then }  P\left( A \cap B \right) \text{ is equal to } \]


Mark the correct alternative in the following question:
Two cards are drawn from a well shuffled deck of 52 playing cards with replacement. The probability that both cards are queen is


Mark the correct alternative in the following question:
If two events are independent, then


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×