Advertisements
Advertisements
Question
Two persons A and B take turns in throwing a pair of dice. The first person to throw 9 from both dice will be awarded the prize. If A throws first, then the probability that Bwins the game is
Options
9/17
8/17
8/9
1/9
Solution
\[ \frac{8}{17}\]
\[9 \text{ can be obtained from throw of two dice in only 4 cases as given below } :\]
\[\left[ \left( 3, 6 \right),\left( 4, 5 \right),\left( 5, 4 \right),\left( 6, 3 \right) \right]\]
\[⇒ P\left( \text{ getting } 9 \right)=\frac{4}{36}=\frac{1}{9}\]
\[ P\left(\text{ not getting } 9 \right)=\frac{32}{36}=\frac{8}{9}\]
\[\text{ Now } ,\]
\[P\left( \text{ B is winning } \right)= P\left( { \text{ getting 9 in } 2}_{nd} \text{ throw } \right)+P\left( {\text{ getting 9 in } 4}_{th} \text{ throw } \right) + P\left( {\text{ getting 9 in } 6}_{th} \text{ throw } \right) + . . . \]
\[ = \frac{8}{9} \times \frac{1}{9} + \frac{8}{9} \times \frac{8}{9} \times \frac{8}{9} \times \frac{1}{9} + . . . \]
\[ = \frac{8}{81}\left[ 1 + \frac{64}{81} + \left( \frac{64}{81} \right)^2 + . . . \right]\]
\[ = \frac{8}{81} \times \frac{1}{1 - \frac{64}{81}}\]
\[ = \frac{8}{81} \times \frac{81}{17}\]
\[ = \frac{8}{17}\]
APPEARS IN
RELATED QUESTIONS
In a set of 10 coins, 2 coins are with heads on both the sides. A coin is selected at random from this set and tossed five times. If all the five times, the result was heads, find the probability that the selected coin had heads on both the sides.
A card is drawn from a well-shuffled deck of 52 cards and then a second card is drawn. Find the probability that the first card is a heart and the second card is a diamond if the first card is not replaced.
If A and B are two events such that \[ P\left( A \right) = \frac{7}{13}, P\left( B \right) = \frac{9}{13} \text{ and } P\left( A \cap B \right) = \frac{4}{13}, \text{ then find } P\left( \overline{ A }|B \right) . \]
If A and B are two events such that
\[ P\left( A \right) = \frac{1}{2}, P\left( B \right) = \frac{1}{3} \text{ and } P\left( A \cap B \right) = \frac{1}{4}, \text{ then find } P\left( A|B \right), P\left( B|A \right), P\left( \overline{ A }|B \right) \text{ and } P\left( \overline{ A }|\overline{ B } \right) .\]
A coin is tossed three times. Find P (A/B) in each of the following:
A = At most two tails, B = At least one tail.
A pair of dice is thrown. Find the probability of getting the sum 8 or more, if 4 appears on the first die.
The probability that a student selected at random from a class will pass in Mathematics is `4/5`, and the probability that he/she passes in Mathematics and Computer Science is `1/2`. What is the probability that he/she will pass in Computer Science if it is known that he/she has passed in Mathematics?
Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find \[P \overline A \cup \overline B \] .
A bag contains 3 red and 2 black balls. One ball is drawn from it at random. Its colour is noted and then it is put back in the bag. A second draw is made and the same procedure is repeated. Find the probability of drawing (i) two red balls, (ii) two black balls, (iii) first red and second black ball.
The probability that A hits a target is 1/3 and the probability that B hits it, is 2/5, What is the probability that the target will be hit, if each one of A and B shoots at the target?
An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting 2 red balls.
The probabilities of two students A and B coming to the school in time are \[\frac{3}{7}\text { and }\frac{5}{7}\] respectively. Assuming that the events, 'A coming in time' and 'B coming in time' are independent, find the probability of only one of them coming to the school in time. Write at least one advantage of coming to school in time.
Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: p1 p2 .
A bag contains 3 white, 4 red and 5 black balls. Two balls are drawn one after the other, without replacement. What is the probability that one is white and the other is black?
A bag contains 8 red and 6 green balls. Three balls are drawn one after another without replacement. Find the probability that at least two balls drawn are green.
A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that only one of them will be selected ?
A bag contains 4 white, 7 black and 5 red balls. 4 balls are drawn with replacement. What is the probability that at least two are white?
Three cards are drawn with replacement from a well shuffled pack of 52 cards. Find the probability that the cards are a king, a queen and a jack.
A, B and C in order toss a coin. The one to throw a head wins. What are their respective chances of winning assuming that the game may continue indefinitely?
Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among 100 students, what is the probability that: (i) you both enter the same section? (ii) you both enter the different sections?
An unbiased coin is tossed. If the result is a head, a pair of unbiased dice is rolled and the sum of the numbers obtained is noted. If the result is a tail, a card from a well shuffled pack of eleven cards numbered 2, 3, 4, ..., 12 is picked and the number on the card is noted. What is the probability that the noted number is either 7 or 8?
The bag A contains 8 white and 7 black balls while the bag B contains 5 white and 4 black balls. One ball is randomly picked up from the bag A and mixed up with the balls in bag B. Then a ball is randomly drawn out from it. Find the probability that ball drawn is white.
Three numbers are chosen from 1 to 20. Find the probability that they are consecutive.
6 boys and 6 girls sit in a row at random. Find the probability that all the girls sit together.
The probabilities of a student getting I, II and III division in an examination are \[\frac{1}{10}, \frac{3}{5}\text{ and } \frac{1}{4}\]respectively. The probability that the student fails in the examination is
A person writes 4 letters and addresses 4 envelopes. If the letters are placed in the envelopes at random, then the probability that all letters are not placed in the right envelopes, is
Choose the correct alternative in the following question:
Associated to a random experiment two events A and B are such that
Mark the correct alternative in the following question:
\[\text{ If A and B are two events such that } P\left( A \right) = \frac{1}{2}, P\left( B \right) = \frac{1}{3}, P\left( A|B \right) = \frac{1}{4}, \text{ then } P\left( A \cap B \right) \text{ equals} \]
Mark the correct alternative in the following question:
\[\text{ If A and B are two events such that } P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 3 \text{ and } P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( B \cap A \right) \text{ equals } \]
If A and B are two events such that A ≠ Φ, B = Φ, then
Mark the correct alternative in the following question:
\[\text{ If A and B are two independent events with } P\left( A \right) = \frac{3}{5} \text{ and } P\left( B \right) = \frac{4}{9}, \text{ then } P\left( \overline{A} \cap B \right) \text{ equals } \]
Mark the correct alternative in the following question: A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement, then the probability that exactly two of the three balls were red, the first ball being red, is
Mark the correct alternative in the following question:
\[\text{ If A and B are such that } P\left( A \cup B \right) = \frac{5}{9} \text{ and } P\left( \overline{A} \cup \overline{B} \right) = \frac{2}{3}, \text{ then } P\left( A \right) + P\left( B \right) = \]
Refer to Question 6. Calculate the probability that the defective tube was produced on machine E1.