English

There Are Three Urns A, B, and C. Urn a Contains 4 Red Balls and 3 Black Balls. Urn B Contains 5 Red Balls and 4 Black Balls. - Mathematics

Advertisements
Advertisements

Question

There are three urns A, B, and C. Urn A contains 4 red balls and 3 black balls. urn B contains 5 red balls and 4 black balls. Urn C contains 4 red and 4 black balls. One ball is drawn from each of these urns. What is the probability that 3 balls drawn consists of 2 red balls and a black ball?

Sum

Solution

\[\text{ Given} :\]
\[\text{ Urn } A\left( 4R + 3B \right)\]
\[\text{ Urn }  B\left( 5R + 4B \right)\]
\[\text{ Urn }  C\left( 4R + 4B \right)\]
P (two red and one black )   =  P ( Red from urn A ) × ( Black from urn B ) ×  P ( Red  from urn C ) + P ( Red from urn A ) × ( Red  from urn B ) ×  P ( Black  from urn C ) + P ( Black from urn A ) × ( Red  from urn B ) ×  P ( Red  from urn C )
\[ = \frac{3}{7} \times \frac{5}{9} \times \frac{4}{8} + \frac{4}{7} \times \frac{4}{9} \times \frac{4}{8} + \frac{4}{7} \times \frac{5}{9} \times \frac{4}{8}\]
\[ = \frac{5}{42} \times \frac{16}{126} \times \frac{20}{126}\]
\[ = \frac{15 + 16 + 20}{126}\]
\[ = \frac{51}{126} = \frac{17}{42}\]

shaalaa.com
Probability Examples and Solutions
  Is there an error in this question or solution?
Chapter 31: Probability - Exercise 31.5 [Page 69]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 31 Probability
Exercise 31.5 | Q 23 | Page 69

RELATED QUESTIONS

An experiment succeeds thrice as often as it fails. Find the probability that in the next five trials, there will be at least 3 successes.


From a pack of 52 cards, 4 are drawn one by one without replacement. Find the probability that all are aces(or kings).

 

Find the chance of drawing 2 white balls in succession from a bag containing 5 red and 7 white balls, the ball first drawn not being replaced.


An urn contains 10 black and 5 white balls. Two balls are drawn from the urn one after the other without replacement. What is the probability that both drawn balls are black?

 

A coin is tossed three times. Find P (A/B) in each of the following:
A = Heads on third toss, B = Heads on first two tosses.


Two coins are tossed once. Find P (A/B) in each of the following:

A = No tail appears, B = No head appears.


A dice is thrown twice and the sum of the numbers appearing is observed to be 6. What is the conditional probability that the number 4 has appeared at least once?


Prove that in throwing a pair of dice, the occurrence of the number 4 on the first die is independent of the occurrence of 5 on the second die.


A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent?
A = The card drawn is a king or queen, B = the card drawn is a queen or jack.


A coin is tossed three times. Let the events AB and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. C and A


Given two independent events A and B such that P (A) = 0.3 and P (B) = `0.6. Find P (A ∩ overlineB ) `.


A and B are two independent events. The probability that A and B occur is 1/6 and the probability that neither of them occurs is 1/3. Find the probability of occurrence of two events.


If A and B are two independent events such that P (A ∪ B) = 0.60 and P (A) = 0.2, find P(B).


A die is tossed twice. Find the probability of getting a number greater than 3 on each toss.

 

A die is thrown thrice. Find the probability of getting an odd number at least once.

 

Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are:   (1 -  p1)p2  


A bag contains 3 white, 4 red and 5 black balls. Two balls are drawn one after the other, without replacement. What is the probability that one is white and the other is black?

 

A bag contains 8 red and 6 green balls. Three balls are drawn one after another without replacement. Find the probability that at least two balls drawn are green.

 

Tickets are numbered from 1 to 10. Two tickets are drawn one after the other at random. Find the probability that the number on one of the tickets is a multiple of 5 and on the other a multiple of 4.

 

A bag contains 4 red and 5 black balls, a second bag contains 3 red and 7 black balls. One ball is drawn at random from each bag, find the probability that the (i) balls are of different colours (ii) balls are of the same colour.


A card is drawn from a well-shuffled deck of 52 cards. The outcome is noted, the card is replaced and the deck reshuffled. Another card is then drawn from the deck.
(i) What is the probability that both the cards are of the same suit?
(ii) What is the probability that the first card is an ace and the second card is a red queen?


Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among 100 students, what is the probability that: (i) you both enter the same section? (ii) you both enter the different sections?


A purse contains 2 silver and 4 copper coins. A second purse contains 4 silver and 3 copper coins. If a coin is pulled at random from one of the two purses, what is the probability that it is a silver coin?


The contents of three bags I, II and III are as follows:
Bag I : 1 white, 2 black and 3 red balls,
Bag II : 2 white, 1 black and 1 red ball;
Bag III : 4 white, 5 black and 3 red balls.
A bag is chosen at random and two balls are drawn. What is the probability that the balls are white and red?


Three machines E1E2E3 in a certain factory produce 50%, 25% and 25%, respectively, of the total daily output of electric bulbs. It is known that 4% of the tubes produced one each of the machines Eand E2 are defective, and that 5% of those produced on E3 are defective. If one tube is picked up at random from a day's production, then calculate the probability that it is defective.


If A and B are two independent events such that P (A) = 0.3 and P (A ∪ \[B\]) = 0.8. Find P (B).

 
 

Out of 30 consecutive integers, 2 are chosen at random. The probability that their sum is odd, is


A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is


A coin is tossed three times. If events A and B are defined as A = Two heads come, B = Last should be head. Then, A and B are ______.


If A and B are two events, then P (`overline A` ∩ B) =


Mark the correct alternative in the following question:

If A and B are two events such that P(A) = \[\frac{4}{5}\] , and \[P\left( A \cap B \right) = \frac{7}{10}\] , then P(B|A) =


Mark the correct alternative in the following question:

\[ \text{ If }  P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ and }  P\left( \overline{A \cup B }\right) = \frac{4}{5}, \text{ then }  P\left( \overline{ A } \cup B \right) + P\left( A \cup B \right) = \]


Mark the correct alternative in the following question:

\[\text{ If} P\left( A \right) = 0 . 4, P\left( B \right) = 0 . 8 \text{ and } P\left( B|A \right) = 0 . 6, \text{ then } P\left( A \cup B \right) = \]


Mark the correct alternative in the following question:

\[\text{ If } P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ and } P\left( A \cup B \right) = \frac{4}{5}, \text{ then }  P\left( B|\overline{ A } \right) = \]


Mark the correct alternative in the following question
Three persons, A, B and C fire a target in turn starting with A. Their probabilities of hitting the target are 0.4, 0.2 and 0.2, respectively. The probability of two hits is


Mark the correct alternative in the following question:
Two cards are drawn from a well shuffled deck of 52 playing cards with replacement. The probability that both cards are queen is


Mark the correct alternative in the following question:

\[\text{ Let A and B be two events  . If } P\left( A \right) = 0 . 2, P\left( B \right) = 0 . 4, P\left( A \cup B \right) = 0 . 6, \text{ then }  P\left( A|B \right) \text{ is equal to} \]


There are two boxes I and II. Box I contains 3 red and 6 Black balls. Box II contains 5 red and black balls. One of the two boxes, box I and box II is selected at random and a ball is drawn at random. The ball drawn is found to be red. If the probability that this red ball comes out from box II is ' a find the value of n 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×