English

An Anti-aircraft Gun Can Take a Maximum of 4 Shots at an Enemy Plane Moving Away from It. - Mathematics

Advertisements
Advertisements

Question

An anti-aircraft gun can take a maximum of 4 shots at an enemy plane moving away from it. The probabilities of hitting the plane at the first, second, third and fourth shot are 0.4, 0.3, 0.2 and 0.1 respectively. What is the probability that the gun hits the plane?

Solution

\[P \left( \text{ gun hits the plane } \right) = 1 - \left( \text{ gun does not hit the plane } \right)\]
\[ \Rightarrow P\left( A \right) = 1 - P\left( \bar{A} \right)\]
\[\text{ Now } , \]
\[ \Rightarrow P\left( \bar{A} \right) = \left( 1 - 0 . 4 \right)\left( 1 - 0 . 3 \right)\left( 1 - 0 . 2 \right)\left( 1 - 0 . 1 \right)\]
\[ = 0 . 6 \times 0 . 7 \times 0 . 8 \times 0 . 9\]
\[ = 0 . 3024\]
\[ \therefore P\left( A \right) = 1 - 0 . 3024\]
\[ = 0 . 6976\]

shaalaa.com
Probability Examples and Solutions
  Is there an error in this question or solution?
Chapter 31: Probability - Exercise 31.4 [Page 54]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 31 Probability
Exercise 31.4 | Q 18 | Page 54

RELATED QUESTIONS

Given that the two numbers appearing on throwing two dice are different. Find the probability of the event 'the sum of numbers on the dice is 4'.


From a pack of 52 cards, two are drawn one by one without replacement. Find the probability that both of them are kings.


A bag contains 25 tickets, numbered from 1 to 25. A ticket is drawn and then another ticket is drawn without replacement. Find the probability that both tickets will show even numbers.


Two cards are drawn without replacement from a pack of 52 cards. Find the probability that both are kings .


A card is drawn from a well-shuffled deck of 52 cards and then a second card is drawn. Find the probability that the first card is a heart and the second card is a diamond if the first card is not replaced.


If A and B are two events such that \[ P\left( A \right) = \frac{1}{3}, P\left( B \right) = \frac{1}{4} \text{ and }  P\left( A \cup B \right) = \frac{5}{12}, \text{ then find }  P\left( A|B \right) \text{ and }  P\left( B|A \right) . \]


A coin is tossed three times. Find P (A/B) in each of the following:

A = At most two tails, B = At least one tail.


Find the probability that the sum of the numbers showing on two dice is 8, given that at least one die does not show five.


Two dice are thrown and it is known that the first die shows a 6. Find the probability that the sum of the numbers showing on two dice is 7.


A pair of dice is thrown. Let E be the event that the sum is greater than or equal to 10 and F be the event "5 appears on the first-die". Find P (E/F). If F is the event "5 appears on at least one die", find P (E/F).


The probability that a student selected at random from a class will pass in Mathematics is `4/5`, and the probability that he/she passes in Mathematics and Computer Science is `1/2`.  What is the probability that he/she will pass in Computer Science if it is known that he/she has passed in Mathematics?


A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent?
A = The card drawn is a king or queen, B = the card drawn is a queen or jack.


An article manufactured by a company consists of two parts X and Y. In the process of manufacture of the part X, 9 out of 100 parts may be defective. Similarly, 5 out of 100 are likely to be defective in the manufacture of part Y. Calculate the probability that the assembled product will not be defective.


An urn contains 4 red and 7 black balls. Two balls are drawn at random with replacement. Find the probability of getting one red and one blue ball.


Let A and B be two independent events such that P(A) = p1 and P(B) = p2. Describe in words the events whose probabilities are: p1 p2 .


A bag contains 6 black and 3 white balls. Another bag contains 5 black and 4 white balls. If one ball is drawn from each bag, find the probability that these two balls are of the same colour.

 

Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that one of them is black and other is red.


A bag contains 8 red and 6 green balls. Three balls are drawn one after another without replacement. Find the probability that at least two balls drawn are green.

 

A bag contains 4 red and 5 black balls, a second bag contains 3 red and 7 black balls. One ball is drawn at random from each bag, find the probability that the (i) balls are of different colours (ii) balls are of the same colour.


A and B take turns in throwing two dice, the first to throw 9 being awarded the prize. Show that their chance of winning are in the ratio 9:8.


A bag contains 3 white and 2 black balls and another bag contains 2 white and 4 black balls. One bag is chosen at random. From the selected bag, one ball is drawn. Find the probability that the ball drawn is white.


An unbiased coin is tossed. If the result is a head, a pair of unbiased dice is rolled and the sum of the numbers obtained is noted. If the result is a tail, a card from a well shuffled pack of eleven cards numbered 2, 3, 4, ..., 12 is picked and the number on the card is noted. What is the probability that the noted number is either 7 or 8?


One bag contains 4 white and 5 black balls. Another bag contains 6 white and 7 black balls. A ball is transferred from first bag to the second bag and then a ball is drawn from the second bag. Find the probability that the ball drawn is white.


An urn contains 10 white and 3 black balls. Another urn contains 3 white and 5 black balls. Two are drawn from first urn and put into the second urn and then a ball is drawn from the latter. Find the probability that its is a white ball.


6 boys and 6 girls sit in a row at random. Find the probability that all the girls sit together.


The probabilities of a student getting I, II and III division in an examination are  \[\frac{1}{10}, \frac{3}{5}\text{ and } \frac{1}{4}\]respectively. The probability that the student fails in the examination is

 

Three faces of an ordinary dice are yellow, two faces are red and one face is blue. The dice is rolled 3 times. The probability that yellow red and blue face appear in the first second and third throws respectively, is


A bag contains 5 brown and 4 white socks. A man pulls out two socks. The probability that these are of the same colour is


If S is the sample space and P (A) = \[\frac{1}{3}\]P (B) and S = A ∪ B, where A and B are two mutually exclusive events, then P (A) =


Mark the correct alternative in the following question:

\[\text{ If A and B are two events such that} P\left( A \right) \neq 0 \text{ and }  P\left( B \right) \neq 1,\text{ then } P\left( \overline{ A }|\overline{ B }\right) = \]


Mark the correct alternative in the following question:

\[\text{ If the events A and B are independent, then }  P\left( A \cap B \right) \text{ is equal to } \]


Mark the correct alternative in the following question: 

\[\text{ If A and B are two independent events such that}  P\left( A \right) = 0 . 3 \text{ and } P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( A|B \right) - P\left( B|A \right) = \]

 

 


Mark the correct alternative in the following question:
A box contains 3 orange balls, 3 green balls and 2 blue balls. Three balls are drawn at random from the box without replacement. The probability of drawing 2 green balls and one blue ball is


Mark the correct alternative in the following question:
Assume that in a family, each child is equally likely to be a boy or a girl. A family with three children is chosen at random. The probability that the eldest child is a girl given that the family has at least one girl is


The probability that in a year of 22nd century chosen at random, there will be 53 Sunday, is ______.


A, B and C throw a pair of dice in that order alternatively till one of them gets a total of 9 and wins the game. Find their respective probabilities of winning, if A starts first.


Out of 8 outstanding students of a school, in which there are 3 boys and 5 girls, a team of 4 students is to be selected for a quiz competition. Find the probability that 2 boys and 2 girls are selected.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×