English

From a Deck of Cards, Three Cards Are Drawn on by One Without Replacement. Find the Probability that Each Time It is a Card of Spade. - Mathematics

Advertisements
Advertisements

Question

From a deck of cards, three cards are drawn on by one without replacement. Find the probability that each time it is a card of spade.

Solution

Consider the events
A = An ace in the first draw
B = An ace in the second draw
C = Getting an ace in the third draw

 Now ,
P(A)=1352=14
P(B/A)=1251=417
P(C/AB)=1150
 Required probability =P(ABC)
=P(A)×P(B/A)×P(C/AB)
=14×417×1150
=11850

shaalaa.com
Probability Examples and Solutions
  Is there an error in this question or solution?
Chapter 31: Probability - Exercise 31.2 [Page 22]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 31 Probability
Exercise 31.2 | Q 5 | Page 22

RELATED QUESTIONS

A die is thrown 6 times. If ‘getting an odd number’ is a success, what is the probability of
(i) 5 successes?
(ii) at least 5 successes?
(iii) at most 5 successes?


If A and B are two events such that P (A) = 13, P (B) = 15 and P (A ∪ B) = 1130 , find P (A/B) and P (B/A).

 
 
 

A couple has two children. Find the probability that both the children are (i) males, if it is known that at least one of the children is male. (ii) females, if it is known that the elder child is a female.


A bag contains 5 white, 7 red and 3 black balls. If three balls are drawn one by one without replacement, find the probability that none is red.


A card is drawn from a well-shuffled deck of 52 cards and then a second card is drawn. Find the probability that the first card is a heart and the second card is a diamond if the first card is not replaced.


If A and B are two events such that P(A)=13,P(B)=14 and P(AB)=512, then find P(A|B) and P(B|A).


If A and B are two events such thatP(A)=611,P(B)=511 and P(AB)=711, then find P(AB),P(A|B) and P(B|A).


A die is thrown twice and the sum of the numbers appearing is observed to be 8. What is the conditional probability that the number 5 has appeared at least once?


A pair of dice is thrown. Let E be the event that the sum is greater than or equal to 10 and F be the event "5 appears on the first-die". Find P (E/F). If F is the event "5 appears on at least one die", find P (E/F).


A coin is tossed three times. Let the events AB and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. C and A


Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (A ∩ B).


A die is tossed twice. Find the probability of getting a number greater than 3 on each toss.

 

A bag contains 3 red and 2 black balls. One ball is drawn from it at random. Its colour is noted and then it is put back in the bag. A second draw is made and the same procedure is repeated. Find the probability of drawing (i) two red balls, (ii) two black balls, (iii) first red and second black ball.


A die is thrown thrice. Find the probability of getting an odd number at least once.

 

A bag contains 3 red and 5 black balls and a second bag contains 6 red and 4 black balls. A ball is drawn from each bag. Find the probability that one is red and the other is black.


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that both the balls are red.


A bag contains 8 red and 6 green balls. Three balls are drawn one after another without replacement. Find the probability that at least two balls drawn are green.

 

Two cards are drawn from a well shuffled pack of 52 cards, one after another without replacement. Find the probability that one of these is red card and the other a black card?

 

A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that both of them will be selected ?


A and B take turns in throwing two dice, the first to throw 9 being awarded the prize. Show that their chance of winning are in the ratio 9:8.


An urn contains 7 red and 4 blue balls. Two balls are drawn at random with replacement. Find the probability of getting
(i) 2 red balls
(ii) 2 blue balls
(iii) One red and one blue ball.


Out of 100 students, two sections of 40 and 60 are formed. If you and your friend are among 100 students, what is the probability that: (i) you both enter the same section? (ii) you both enter the different sections?


In a hockey match, both teams A and B scored same number of goals upto the end of the game, so to decide the winner, the refree asked both the captains to throw a die alternately and decide that the team, whose captain gets a first six, will be declared the winner. If the captain of team A was asked to start, find their respective probabilities of winning the match and state whether the decision of the refree was fair or not.


A bag contains 3 white and 2 black balls and another bag contains 2 white and 4 black balls. One bag is chosen at random. From the selected bag, one ball is drawn. Find the probability that the ball drawn is white.


The contents of three bags I, II and III are as follows:
Bag I : 1 white, 2 black and 3 red balls,
Bag II : 2 white, 1 black and 1 red ball;
Bag III : 4 white, 5 black and 3 red balls.
A bag is chosen at random and two balls are drawn. What is the probability that the balls are white and red?


An urn contains 10 white and 3 black balls. Another urn contains 3 white and 5 black balls. Two are drawn from first urn and put into the second urn and then a ball is drawn from the latter. Find the probability that its is a white ball.


A four digit number is formed using the digits 1, 2, 3, 5 with no repetitions. Write the probability that the number is divisible by 5.


When three dice are thrown, write the probability of getting 4 or 5 on each of the dice simultaneously.

 

Three numbers are chosen from 1 to 20. Find the probability that they are consecutive.

 

If A and B are two events write the expression for the probability of occurrence of exactly one of two events.


In a competition AB and C are participating. The probability that A wins is twice that of B, the probability that B wins is twice that of C. Find the probability that A losses.


If A and B are independent events such that P(A) = p, P(B) = 2p and P(Exactly one of Aand B occurs) =  59, then find the value of p.


A and B draw two cards each, one after another, from a pack of well-shuffled pack of 52 cards. The probability that all the four cards drawn are of the same suit is


A bag contains 5 black balls, 4 white balls and 3 red balls. If a ball is selected randomwise, the probability that it is black or red ball is


A coin is tossed three times. If events A and B are defined as A = Two heads come, B = Last should be head. Then, A and B are ______.


Mark the correct alternative in the following question:

 If the events A and B are independent, then P(AB) is equal to 


Mark the correct alternative in the following question:
In a college 30% students fail in Physics, 25% fail in Mathematics and 10% fail in both. One student is chosen at random. The probability that she fails in Physics if she failed in Mathematics is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.