Advertisements
Advertisements
प्रश्न
If A and B are two independent events such that P (`bar A` ∩ B) = 2/15 and P (A ∩`bar B` ) = 1/6, then find P (B).
उत्तर
\[\text{ Let }: \]
\[P\left( A \right) = x \]
\[P\left( B \right) = y\]
\[P\left( \bar{A} \cap B \right) = \frac{2}{15}\]
\[ \Rightarrow P\left( \bar{A} \right) \times P\left( B \right) = \frac{2}{15}\]
\[ \Rightarrow \left( 1 - x \right)y = \frac{2}{15} . . . \left( 1 \right)\]
\[P\left( A \cap \bar{B} \right) = \frac{1}{6}\]
\[ \Rightarrow P\left( A \right) \times P\left( B \right) = \frac{1}{6} \]
\[ \Rightarrow \left( 1 - y \right)x = \frac{1}{6} . . . \left( 2 \right)\]
\[\text{ Subtracting} \left( 2 \right) \text{from} \left( 1 \right), \text{ we get } \]
\[x - y = \frac{1}{30}\]
\[x = y + \frac{1}{30}\]
\[\text {Substituting the value of x in } \left( 2 \right),\text{ we get } \]
\[\left( y + \frac{1}{30} \right)\left( 1 - y \right) = \frac{1}{6}\]
\[ \Rightarrow 30 y^2 - 29y + 4 = 0\]
\[ \Rightarrow y = \frac{1}{6}, \frac{4}{5}\]
APPEARS IN
संबंधित प्रश्न
How many times must a fair coin be tossed so that the probability of getting at least one head is more than 80%?
Given that the two numbers appearing on throwing two dice are different. Find the probability of the event 'the sum of numbers on the dice is 4'.
A die is thrown three times, find the probability that 4 appears on the third toss if it is given that 6 and 5 appear respectively on first two tosses.
From a pack of 52 cards, two are drawn one by one without replacement. Find the probability that both of them are kings.
Find the chance of drawing 2 white balls in succession from a bag containing 5 red and 7 white balls, the ball first drawn not being replaced.
A card is drawn from a well-shuffled deck of 52 cards and then a second card is drawn. Find the probability that the first card is a heart and the second card is a diamond if the first card is not replaced.
A pair of dice is thrown. Find the probability of getting 7 as the sum if it is known that the second die always exhibits a prime number.
A die is rolled. If the outcome is an odd number, what is the probability that it is prime?
Two dice are thrown and it is known that the first die shows a 6. Find the probability that the sum of the numbers showing on two dice is 7.
Assume that each born child is equally likely to be a boy or a girl. If a family has two children, then what is the constitutional probability that both are girls? Given that
(i) the youngest is a girl (b) at least one is a girl.
A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?
A = the first throw results in head, B = the last throw results in tail.
A coin is tossed thrice and all the eight outcomes are assumed equally likely. In which of the following cases are the following events A and B are independent?
A = the number of heads is two, B = the last throw results in head.
Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (A ∩ B).
Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (B/A) .
The probabilities of two students A and B coming to the school in time are \[\frac{3}{7}\text { and }\frac{5}{7}\] respectively. Assuming that the events, 'A coming in time' and 'B coming in time' are independent, find the probability of only one of them coming to the school in time. Write at least one advantage of coming to school in time.
A bag contains 6 black and 3 white balls. Another bag contains 5 black and 4 white balls. If one ball is drawn from each bag, find the probability that these two balls are of the same colour.
A bag contains 3 red and 5 black balls and a second bag contains 6 red and 4 black balls. A ball is drawn from each bag. Find the probability that one is red and the other is black.
Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that first ball is black and second is red.
Two cards are drawn successively without replacement from a well-shuffled deck of 52 cards. Find the probability of exactly one ace.
A can hit a target 3 times in 6 shots, B : 2 times in 6 shots and C : 4 times in 4 shots. They fix a volley. What is the probability that at least 2 shots hit?
The probability of student A passing an examination is 2/9 and of student B passing is 5/9. Assuming the two events : 'A passes', 'B passes' as independent, find the probability of : (i) only A passing the examination (ii) only one of them passing the examination.
There are three urns A, B, and C. Urn A contains 4 red balls and 3 black balls. urn B contains 5 red balls and 4 black balls. Urn C contains 4 red and 4 black balls. One ball is drawn from each of these urns. What is the probability that 3 balls drawn consists of 2 red balls and a black ball?
There are 3 red and 5 black balls in bag 'A'; and 2 red and 3 black balls in bag 'B'. One ball is drawn from bag 'A' and two from bag 'B'. Find the probability that out of the 3 balls drawn one is red and 2 are black.
Fatima and John appear in an interview for two vacancies for the same post. The probability of Fatima's selection is \[\frac{1}{7}\] and that of John's selection is \[\frac{1}{5}\] What is the probability that
(i) both of them will be selected?
(ii) only one of them will be selected?
(iii) none of them will be selected?
The bag A contains 8 white and 7 black balls while the bag B contains 5 white and 4 black balls. One ball is randomly picked up from the bag A and mixed up with the balls in bag B. Then a ball is randomly drawn out from it. Find the probability that ball drawn is white.
India play two matches each with West Indies and Australia. In any match the probabilities of India getting 0,1 and 2 points are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is
Five persons entered the lift cabin on the ground floor of an 8 floor house. Suppose that each of them independently and with equal probability can leave the cabin at any floor beginning with the first, then the probability of all 5 persons leaving at different floors is
A box contains 10 good articles and 6 with defects. One item is drawn at random. The probability that it is either good or has a defect is
A bag X contains 2 white and 3 black balls and another bag Y contains 4 white and 2 black balls. One bag is selected at random and a ball is drawn from it. Then, the probability chosen to be white is
Mark the correct alternative in the following question:
\[ \text{ If } P\left( B \right) = \frac{3}{5}, P\left( A|B \right) = \frac{1}{2} \text{ and } P\left( \overline{A \cup B }\right) = \frac{4}{5}, \text{ then } P\left( \overline{ A } \cup B \right) + P\left( A \cup B \right) = \]
Mark the correct alternative in the following question
Three persons, A, B and C fire a target in turn starting with A. Their probabilities of hitting the target are 0.4, 0.2 and 0.2, respectively. The probability of two hits is
Mark the correct alternative in the following question:
If two events are independent, then
Mark the correct alternative in the following question:
A die is thrown and a card is selected at random from a deck of 52 playing cards. The probability of getting an even number of the die and a spade card is
Mark the correct alternative in the following question:
\[\text{ Let A and B be two events such that P } \left( A \right) = 0 . 6, P\left( B \right) = 0 . 2, P\left( A|B \right) = 0 . 5 . \text{ Then } P\left( \overline{A}|\overline{B} \right) \text{ equals } \]
A coin is tossed 5 times. Find the probability of getting (i) at least 4 heads, and (ii) at most 4 heads.
A, B and C throw a pair of dice in that order alternatively till one of them gets a total of 9 and wins the game. Find their respective probabilities of winning, if A starts first.
An insurance company insured 3000 cyclists, 6000 scooter drivers, and 9000 car drivers. The probability of an accident involving a cyclist, a scooter driver, and a car driver are 0⋅3, 0⋅05 and 0⋅02 respectively. One of the insured persons meets with an accident. What is the probability that he is a cyclist?