हिंदी

Solve the following : ∫23xx2-1⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following : `int_2^3 x/(x^2 - 1)*dx`

योग

उत्तर

Let I = `int_2^3 x/(x^2 - 1)*dx`
Put x2 – 1 = t
∴ 2x·dx = dt

∴ x·dx = `(1)/(2)*dt`

When x = 2, t = 22 – 1 = 3
When x = 3, t = 32 – 1 = 8

∴ I = `int_3^8 (1)/"t"*"dt"/(2)`

= `(1)/(2)int_3^8 "dt"/"t"`

= `(1)/(2)[log |"t"|]_3^8`

= `(1)/(2)(log 8 - log 3)`

∴ I = `(1)/(2) log (8/3)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Definite Integration - MISCELLANEOUS EXERCISE - 6 [पृष्ठ १५०]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Definite Integration
MISCELLANEOUS EXERCISE - 6 | Q IV) 8) | पृष्ठ १५०

संबंधित प्रश्न

Prove that:

`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`


Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`


Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`


Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`


Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following : `int_(-2)^(3) |x - 2|*dx`


Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`


Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.


Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


Solve the following : `int_2^3 x/(x^2 + 1)*dx`


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Solution: Let I = `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`

∴ x + 3 = A(x + 2) + B.x

∴ A = `square`, B = `square`

∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`

∴ I = `[square log x + square log(x + 2)]_1^2`

∴ I = `square`


Solve the following.

`int_1^3 x^2 log x dx `


The principle solutions of the equation cos θ = `1/2` are ______.


Evaluate the following definite intergral:

`int_1^3logxdx`


Evaluate the following definite intergral.

`int_4^9 1/sqrtx .dx`


Evaluate the following definite intergral:

`int_(-2)^3 1/(x + 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×