Advertisements
Advertisements
Question
Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`
Solution
Let I = `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`
= `int_0^π sin^2x(1 + 2 cosx)(1 + cosx)^2.sinx.dx`
= `int_0^π (1 - cos^2x)(1 + 2cosx)(1 + cosx)^2.sinx.dx`
Put cos x = t
∴ – sinx.dx = dt.
∴ sinx.dx = –dt
When x = 0, t = cos 0 = 1
When x = π, t = cos π = –1
∴ I = `int_1^(-1) (1 - t^2)(1 + 2t)(1 + t)^2(- dt)`
= `-int_1^(-1)(1 + 2t - t^2 - 2t^3)(1 + 2t + t^2).dt`
= `- int_1^(-1) (1 + 2t - t^2 - 2t^3 + 2t + 4t^2 - 2t^3 - 4t^4 + t^2 + 2t^3 - t^4 - 2t^5).dt`
= `int_1^(-1) (1 + 4t + 4t^2 - 2t^3 - 5t^4 - 2t^5).dt`
= `-[t + 4(t^2/2) + 4(t^3/3) - 2(t^4/4) - 5(t^5/5) - 2(t^6/6)]_1^(-1)`
= `-[t + 2t^2 4/3t^3 - 1/2t^4 - t^5 - 1/3t^6]_1^(-1)`
= `-[(-1 + 2 - 4/3 - 1/2 + 1 - 1/3) - (1 + 2 + 4/3 - 1/2 - 1 - 1/3)]`
= `-[-1 + 2 - 4/3 - 1/2 + 1 - 1/3 - 1 - 2 - 4/3 + 1/2 + 1 + 1/3]`
= `-[-8/3]`
= `(8)/(3)`.
RELATED QUESTIONS
Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`
Evaluate: `int_0^oo xe^-x.dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.
`int_0^1 (x^2 - 2)/(x^2 + 1) "d"x` =
`int_0^4 1/sqrt(4x - x^2) "d"x` =
Evaluate: `int_(pi/6)^(pi/3) cosx "d"x`
Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x "d"x`
Evaluate: `int_1^2 x/(1 + x^2) "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_0^(pi/2) (sin2x)/(1 + sin^2x) "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_(pi/6)^(pi/3) sin^2 x "d"x`
Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x) "d"x`
Evaluate: `int_0^(pi/4) cosx/(4 - sin^2 x) "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x) "d"x`
Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2) "d"x`
Evaluate: `int_(-1)^1 |5x - 3| "d"x`
Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13) "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x)) "d"x`
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Evaluate: `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate:
`int_(π/4)^(π/2) cot^2x dx`.
Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.
Evaluate:
`int_0^(π/2) sin^8x dx`
Evaluate:
`int_-4^5 |x + 3|dx`
The value of `int_2^(π/2) sin^3x dx` = ______.
`int_0^1 x^2/(1 + x^2)dx` = ______.
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`
Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`
If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.