Advertisements
Advertisements
Question
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Solution
Let I = `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Put tan x = t
∴ sec2x dx = dt
When x = 0, t = 0 and when x = `pi/4`, t = 1
∴ I = `int_0^1 "dt"/(3"t"^2 + 4"t" + 1)`
= `1/3 int_0^1 "dt"/("t"^2 + (4"t")/3 + 1/3)`
= `1/3 int_0^1 "dt"/("t"^2 + 2((2"t")/3) + (2/3)^2 - (2/3)^2 + 1/3)`
= `1/3 int_0^1 "dt"/(("t" + 2/3)^2 + ((-4 + 3)/9))`
= `1/3 int_0^1 "dt"/(("t" + 2/3)^2 - (1/3)^2`
= `1/3[1/(2 xx 1/3) log|(("t" + 2/3) - 1/3)/(("t" + 2/3) + 1/3)|]_0^1`
= `1/2[log|(3"t" + 1)/(3"t" + 3)|]_0^1`
= `1/2[log(4/6) - log(1/3)]`
= `1/2 log(4/6 xx 3)`
∴ I = `1/2 log 2`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int_0^(π/4) cot^2x.dx`
Evaluate: `int_0^(pi/2) x sin x.dx`
`int_0^(x/4) sqrt(1 + sin 2x) "d"x` =
If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.
`int_0^1 (x^2 - 2)/(x^2 + 1) "d"x` =
Let I1 = `int_"e"^("e"^2) 1/logx "d"x` and I2 = `int_1^2 ("e"^x)/x "d"x` then
Evaluate: `int_(pi/6)^(pi/3) cosx "d"x`
Evaluate: `int_0^1 1/(1 + x^2) "d"x`
Evaluate: `int_0^1 1/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^(pi/2) (sin2x)/(1 + sin^2x) "d"x`
Evaluate: `int_0^(pi/4) cosx/(4 - sin^2 x) "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x) "d"x`
Evaluate: `int_0^(pi/4) sec^4x "d"x`
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
Evaluate: `int_(1/sqrt(2))^1 (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1) "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2)) "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate `int_(π/6)^(π/3) cos^2x dx`
Evaluate:
`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`
`int_0^1 x^2/(1 + x^2)dx` = ______.
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`