Advertisements
Advertisements
Question
Evaluate: `int_0^(pi/4) cosx/(4 - sin^2 x) "d"x`
Solution
Let I = `int_0^(pi/4) cosx/(4 - sin^2 x) "d"x`
Put sin x = t
∴ cos x dx = dt
When x = 0, t = 0 and when x = `pi/4`,t `1/sqrt(2)`
∴ I = `int_0^(1/sqrt(2)) "dt"/(4 - "t"^2)`
= `int_0^(1/sqrt(2)) "dt"/(2^2 - "t"^2)`
= `[1/(2 xx 2) log|(2 + "t")/(2 - "t")|]_0^(1/sqrt(2))`
= `1/4[log|(2 + 1/sqrt(2))/(2 - 1/sqrt(2))| - log 1]`
= `1/4[log|(2sqrt(2) + 1)/(2sqrt(2) - 1)| - 0]`
∴ I = `1/4 log((2sqrt(2) + 1)/(2sqrt(2) - 1))`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int_0^(π/4) cot^2x.dx`
Evaluate: `int_0^(pi/2) x sin x.dx`
Evaluate: `int_0^oo xe^-x.dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
`int_0^(x/4) sqrt(1 + sin 2x) "d"x` =
If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
`int_0^1 (x^2 - 2)/(x^2 + 1) "d"x` =
Let I1 = `int_"e"^("e"^2) 1/logx "d"x` and I2 = `int_1^2 ("e"^x)/x "d"x` then
`int_0^4 1/sqrt(4x - x^2) "d"x` =
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_0^(pi/4) sec^2 x "d"x`
Evaluate: `int_1^2 x/(1 + x^2) "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_0^(pi/2) (sin2x)/(1 + sin^2x) "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_(pi/6)^(pi/3) sin^2 x "d"x`
Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`
Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x) "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
Evaluate: `int_0^(pi/2) 1/(5 + 4cos x) "d"x`
Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x)) "d"x`
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate:
`int_0^(π/2) sin^8x dx`
Evaluate:
`int_-4^5 |x + 3|dx`
The value of `int_2^(π/2) sin^3x dx` = ______.
Evaluate:
`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`
Evaluate:
`int_0^(π/2) sinx/(1 + cosx)^3 dx`