Advertisements
Advertisements
Question
Evaluate the following:
`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`
Solution
Let I = `int_0^a (1)/(x + sqrt(a^2 - x^2))*dx`
Put x = a sin θ
∴ dx = a cos θ dθ
and `sqrt(a^2 - x^2)` = `sqrt(a^1 - a^2 sin^2theta)`
= `sqrt(a^2(1 - sin^2theta)`
= `sqrt(a^2 cos^2theta)`
= a cos θ
When x = 0, a sin θ = 0
∴ θ = 0
When x – a, a sin θ = a
∴ θ = `pi/(2)`
∴ I = `int_0^(pi/2) (a cos theta d theta)/(a sin theta + a cos theta)`
∴ I = `int_0^(pi/2) (cos theta)/(sin theta + cos theta).d theta` ...(1)
We use the property, ` int_0^a f(a - x).dx`,
Hence in I, we change θ by `[(pi/2) - theta]`
∴ I = `int_0^(pi/2) (cos[(pi/2) - theta])/(sin [(pi/2) - theta] + cos [(pi/2) - theta]).d theta`
= `int_0^(pi/2) sin theta/(cos theta + sin theta).d theta` ...(2)
Adding (1) and (2), we get
2I = `int_0^(pi/2) cos theta/(sin theta + cos theta).d theta + int_0^(pi/2) sin theta/(cos theta + sin theta).d theta`
= `int_0^(pi/2) (cos theta + sin theta)/(cos theta + sin theta).d theta`
= `int_0^(pi/2) 1.d theta = [theta]_0^(pi/2)`
= `(pi/2) - 0` = `pi/(2)`
∴ I = `pi/(4)`.
APPEARS IN
RELATED QUESTIONS
Evaluate: `int_0^(π/4) cot^2x.dx`
Evaluate: `int_0^oo xe^-x.dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
`int_0^4 1/sqrt(4x - x^2) "d"x` =
Evaluate: `int_0^1 |x| "d"x`
Evaluate: `int_0^1 1/sqrt(1 - x^2) "d"x`
Evaluate: `int_1^2 x/(1 + x^2) "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_(pi/6)^(pi/3) sin^2 x "d"x`
Evaluate: `int_0^pi cos^2 x "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2) "d"x`
Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
Evaluate: `int_0^(pi/4) sec^4x "d"x`
Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx)) "d"x`
Evaluate: `int_(1/sqrt(2))^1 (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
Evaluate: `int_0^pi 1/(3 + 2sinx + cosx) "d"x`
Evaluate: `int_0^(π/4) sec^4 x dx`
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
Evaluate:
`int_-4^5 |x + 3|dx`
Evaluate:
`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`
Evaluate:
`int_0^(π/2) sinx/(1 + cosx)^3 dx`
Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`
Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`
If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.