Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`
उत्तर
Let I = `int_0^a (1)/(x + sqrt(a^2 - x^2))*dx`
Put x = a sin θ
∴ dx = a cos θ dθ
and `sqrt(a^2 - x^2)` = `sqrt(a^1 - a^2 sin^2theta)`
= `sqrt(a^2(1 - sin^2theta)`
= `sqrt(a^2 cos^2theta)`
= a cos θ
When x = 0, a sin θ = 0
∴ θ = 0
When x – a, a sin θ = a
∴ θ = `pi/(2)`
∴ I = `int_0^(pi/2) (a cos theta d theta)/(a sin theta + a cos theta)`
∴ I = `int_0^(pi/2) (cos theta)/(sin theta + cos theta).d theta` ...(1)
We use the property, ` int_0^a f(a - x).dx`,
Hence in I, we change θ by `[(pi/2) - theta]`
∴ I = `int_0^(pi/2) (cos[(pi/2) - theta])/(sin [(pi/2) - theta] + cos [(pi/2) - theta]).d theta`
= `int_0^(pi/2) sin theta/(cos theta + sin theta).d theta` ...(2)
Adding (1) and (2), we get
2I = `int_0^(pi/2) cos theta/(sin theta + cos theta).d theta + int_0^(pi/2) sin theta/(cos theta + sin theta).d theta`
= `int_0^(pi/2) (cos theta + sin theta)/(cos theta + sin theta).d theta`
= `int_0^(pi/2) 1.d theta = [theta]_0^(pi/2)`
= `(pi/2) - 0` = `pi/(2)`
∴ I = `pi/(4)`.
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_0^oo xe^-x.dx`
Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
`int_0^(x/4) sqrt(1 + sin 2x) "d"x` =
If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
Let I1 = `int_"e"^("e"^2) 1/logx "d"x` and I2 = `int_1^2 ("e"^x)/x "d"x` then
`int_0^4 1/sqrt(4x - x^2) "d"x` =
Evaluate: `int_(pi/6)^(pi/3) cosx "d"x`
Evaluate: `int_0^1 1/(1 + x^2) "d"x`
Evaluate: `int_0^(pi/4) sec^2 x "d"x`
Evaluate: `int_1^2 x/(1 + x^2) "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x) "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x) "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x)) "d"x`
Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate:
`int_-4^5 |x + 3|dx`
The value of `int_2^(π/2) sin^3x dx` = ______.
Evaluate:
`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`
`int_0^1 x^2/(1 + x^2)dx` = ______.
Evaluate:
`int_0^(π/2) sinx/(1 + cosx)^3 dx`
Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`
If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.