Advertisements
Advertisements
प्रश्न
Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x)) "d"x`
उत्तर
Let I = `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x)) "d"x`
= `int_(-1)^1 1/("a"^2"e"^x + ("b"^2)/("e"^x)) "d"x`
= `int_(-1)^1 "e"^x/("a"^2("e"^x)^2 + "b"^2) "d"x`
Put ex = t
∴ ex dx = dt
When x = −1, t = e−1 and when x = 1, t = e
∴ I = `int_("e"^-1)^"e" "dt"/("a"^2"t"^2 + "b"^2)`
= `1/("a"^2) int_("e"^-1)^"e" "dt"/("t"^2 + ("b"/"a")^2`
= `1/("a"^2)[1/("b"/"a")tan^-1 ("t"/("b"/"a"))]_("e"^-1)^"e"`
= `1/"ab"[tan^-1("at"/"b")]_("e"^-1)^"e"`
∴ I = `1/"ab"[tan^-1("ae"/"b") - tan^-1("a"/"be")]`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_0^(π/4) cot^2x.dx`
Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`
Evaluate: `int_0^(pi/2) x sin x.dx`
Evaluate: `int_0^oo xe^-x.dx`
Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
`int_0^1 (x^2 - 2)/(x^2 + 1) "d"x` =
`int_0^4 1/sqrt(4x - x^2) "d"x` =
Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x "d"x`
Evaluate: `int_0^(pi/4) sec^2 x "d"x`
Evaluate: `int_0^1 |x| "d"x`
Evaluate: `int_0^pi cos^2 x "d"x`
Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x) "d"x`
Evaluate: `int_0^(pi/4) cosx/(4 - sin^2 x) "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2) "d"x`
Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
Evaluate: `int_0^(pi/4) sec^4x "d"x`
Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx)) "d"x`
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
Evaluate: `int_0^pi 1/(3 + 2sinx + cosx) "d"x`
Evaluate: `int_0^(π/4) sec^4 x dx`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.
Evaluate:
`int_-4^5 |x + 3|dx`
The value of `int_2^(π/2) sin^3x dx` = ______.
Evaluate:
`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`
Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`