Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
उत्तर
Let I = `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
Put x = sin θ
∴ dx = cos θ dθ
When x = 0, θ = sin−10 = 0 and
When x = `1/2`, θ = `sin^-1 (1/2) = pi/6`
∴ I = `int_0^(pi/6) 1/((1 - 2sin^2theta)(sqrt(1 - sin^2theta))) cos theta "d"theta`
= `int_0^(pi/6) 1/((cos 2theta)(cos theta)) cos theta "d"theta`
= `int_0^(pi/6) 1/(cos 2theta) * "d"theta`
= `int_0^(pi/6) sec 2theta "d"theta`
= `1/2 [log|sec 2theta + tan 2theta|]_0^(pi/6)`
= `1/2[log|sec2(pi/6) + tan2(pi/6)|] - 1/2[log|sec2(0) + tan2(0)|]`
= `1/2[log|sec(pi/3) + tan(pi/3)|] - 1/2[log|sec(0) + tan(0)|]`
= `1/2[log|2 + sqrt(3)|] - 1/2 log|1|`
∴ I = `1/2 log|2 + sqrt(3)|`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_0^(π/4) cot^2x.dx`
Evaluate: `int_0^(pi/2) x sin x.dx`
Evaluate: `int_0^oo xe^-x.dx`
Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`
Evaluate the following:
`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
Let I1 = `int_"e"^("e"^2) 1/logx "d"x` and I2 = `int_1^2 ("e"^x)/x "d"x` then
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_0^1 |x| "d"x`
Evaluate: `int_1^2 x/(1 + x^2) "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_0^(pi/2) (sin2x)/(1 + sin^2x) "d"x`
Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x) "d"x`
Evaluate: `int_0^pi cos^2 x "d"x`
Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x) "d"x`
Evaluate: `int_0^(pi/4) cosx/(4 - sin^2 x) "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2) "d"x`
Evaluate: `int_0^(pi/2) 1/(5 + 4cos x) "d"x`
Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x)) "d"x`
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
Evaluate: `int_0^pi 1/(3 + 2sinx + cosx) "d"x`
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate:
`int_(π/4)^(π/2) cot^2x dx`.
Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
Evaluate `int_(π/6)^(π/3) cos^2x dx`
Evaluate:
`int_-4^5 |x + 3|dx`
Evaluate:
`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`
Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`