मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate: ∫0121(1-2x2)1-x2 dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2))  "d"x`

बेरीज

उत्तर

Let I = `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2))  "d"x`

Put x = sin θ

∴ dx = cos θ dθ

When x = 0, θ = sin−10 = 0 and

When x = `1/2`, θ = `sin^-1 (1/2) = pi/6`

∴ I = `int_0^(pi/6) 1/((1 - 2sin^2theta)(sqrt(1 - sin^2theta)))  cos theta  "d"theta` 

= `int_0^(pi/6) 1/((cos 2theta)(cos theta))  cos theta  "d"theta`

= `int_0^(pi/6) 1/(cos 2theta) *  "d"theta`

= `int_0^(pi/6) sec 2theta  "d"theta`

= `1/2 [log|sec 2theta + tan 2theta|]_0^(pi/6)`

= `1/2[log|sec2(pi/6) + tan2(pi/6)|] - 1/2[log|sec2(0) + tan2(0)|]`

= `1/2[log|sec(pi/3) + tan(pi/3)|] - 1/2[log|sec(0) + tan(0)|]`

= `1/2[log|2 + sqrt(3)|] - 1/2 log|1|`

∴ I = `1/2 log|2 + sqrt(3)|`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.4: Definite Integration - Long Answers III

संबंधित प्रश्‍न

Evaluate: `int_0^(π/4) cot^2x.dx`


Evaluate: `int_0^(pi/2) x sin x.dx`


Evaluate: `int_0^oo xe^-x.dx`


Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`


Evaluate the following:

`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.


Let I1 = `int_"e"^("e"^2)  1/logx  "d"x` and I2 = `int_1^2 ("e"^x)/x  "d"x` then 


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_0^1 |x|  "d"x`


Evaluate: `int_1^2 x/(1 + x^2)  "d"x`


Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1)  "d"x`


Evaluate: `int_0^(pi/2)  (sin2x)/(1 +  sin^2x)  "d"x`


Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x)  "d"x`


Evaluate: `int_0^pi cos^2 x  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_0^(pi/4)  cosx/(4 - sin^2 x)  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2)  "d"x`


Evaluate: `int_0^(pi/2) 1/(5 + 4cos x)  "d"x`


Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x))  "d"x`


Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2))  "d"x`


Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`


Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2)  "d"x`


Evaluate: `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`


Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`


Evaluate: `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`


If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.


Evaluate:

`int_(π/4)^(π/2) cot^2x  dx`.


Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.


Evaluate:

`int_(-π/2)^(π/2) |sinx|dx`


Evaluate `int_(π/6)^(π/3) cos^2x  dx`


Evaluate:

`int_-4^5 |x + 3|dx`


Evaluate:

`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`


Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×