Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^1 x* tan^-1x "d"x`
उत्तर
Let I = `int_0^1 x tan^-1x "d"x`
= `[tan^-1 x int x "d"x]_0^1 - int_0^1["d"/("d"x)(tan^-1x) int x "d"x]"d"x`
= `[tan^-1x* x^2/2]_0^1 -int_0^1 1/(1 + x^2)*x^2/2 "d"x`
= `[x^2/2 tan^-1x]_0^1 - 1/2 int_0^1 x^2/(1 + x^2) "d"x`
= `[1/2 tan^-1 - 0] - 1/2 int (x^2 + 1 - 1)/(1 + x^2) "d"x`
= `1/2* pi/4 - 1/2 int_0^1 (1 - 1/(1 + x^2)) "d"x`
= `pi/8 - 1/2[x - tan^-1x]_0^1`
= `pi/8 - 1/2[(1 - tan^-1 1) - (0 - tan^-1 0)]`
= `pi/8 - 1/2(1 - pi/4 - 0)`
= `pi/8 - 1/2 + pi/8`
∴ I = `pi/4 - 1/2`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`
Evaluate: `int_0^(pi/2) x sin x.dx`
`int_0^(x/4) sqrt(1 + sin 2x) "d"x` =
`int_0^1 (x^2 - 2)/(x^2 + 1) "d"x` =
Let I1 = `int_"e"^("e"^2) 1/logx "d"x` and I2 = `int_1^2 ("e"^x)/x "d"x` then
Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x "d"x`
Evaluate: `int_0^1 |x| "d"x`
Evaluate: `int_1^2 x/(1 + x^2) "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_0^(pi/2) (sin2x)/(1 + sin^2x) "d"x`
Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x) "d"x`
Evaluate: `int_0^(pi/2) cos^3x "d"x`
Evaluate: `int_0^pi cos^2 x "d"x`
Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x) "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_0^(pi/2) 1/(5 + 4cos x) "d"x`
Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x)) "d"x`
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_(1/sqrt(2))^1 (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^(π/4) sec^4 x dx`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
The value of `int_2^(π/2) sin^3x dx` = ______.
Evaluate:
`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`
Evaluate:
`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`
`int_0^1 x^2/(1 + x^2)dx` = ______.
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`