मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate: ∫01x⋅tan-1x dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^1 x* tan^-1x  "d"x`

बेरीज

उत्तर

Let I = `int_0^1 x tan^-1x  "d"x`

= `[tan^-1 x int x  "d"x]_0^1 - int_0^1["d"/("d"x)(tan^-1x) int x  "d"x]"d"x`

= `[tan^-1x* x^2/2]_0^1 -int_0^1 1/(1 + x^2)*x^2/2  "d"x`

= `[x^2/2 tan^-1x]_0^1 - 1/2 int_0^1 x^2/(1 + x^2)  "d"x`

= `[1/2 tan^-1 - 0] - 1/2 int (x^2 + 1 - 1)/(1 + x^2)  "d"x`

= `1/2* pi/4 - 1/2 int_0^1 (1 - 1/(1 + x^2)) "d"x`

= `pi/8 - 1/2[x - tan^-1x]_0^1`

= `pi/8 - 1/2[(1 - tan^-1 1) - (0 - tan^-1 0)]`

= `pi/8 - 1/2(1 - pi/4 - 0)`

= `pi/8 - 1/2 + pi/8`

∴ I = `pi/4 - 1/2`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.4: Definite Integration - Short Answers II

संबंधित प्रश्‍न

Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`


Evaluate: `int_0^(pi/2) x sin x.dx`


`int_0^(x/4) sqrt(1 + sin 2x)  "d"x` =


`int_0^1 (x^2 - 2)/(x^2 + 1)  "d"x` =


Let I1 = `int_"e"^("e"^2)  1/logx  "d"x` and I2 = `int_1^2 ("e"^x)/x  "d"x` then 


Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x  "d"x`


Evaluate: `int_0^1 |x|  "d"x`


Evaluate: `int_1^2 x/(1 + x^2)  "d"x`


Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1)  "d"x`


Evaluate: `int_0^(pi/2)  (sin2x)/(1 +  sin^2x)  "d"x`


Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x)  "d"x`


Evaluate: `int_0^(pi/2) cos^3x  "d"x`


Evaluate: `int_0^pi cos^2 x  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`


Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x)  "d"x`


Evaluate: `int_0^(pi/2) 1/(5 + 4cos x)  "d"x`


Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x))  "d"x`


Evaluate: `int_0^3 x^2 (3 - x)^(5/2)  "d"x`


Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2))  "d"x`


Evaluate: `int_0^(pi/4)  (sec^2x)/(3tan^2x + 4tan x + 1)  "d"x`


Evaluate: `int_(1/sqrt(2))^1  (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`


Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2)  "d"x`


Evaluate: `int_0^(π/4) sec^4 x  dx`


`int_0^(π/2) sin^6x cos^2x.dx` = ______.


Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.


Evaluate:

`int_(-π/2)^(π/2) |sinx|dx`


The value of `int_2^(π/2) sin^3x  dx` = ______.


Evaluate:

`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`


Evaluate:

`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`


`int_0^1 x^2/(1 + x^2)dx` = ______.


Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×