मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate: ∫121 (ecos-1x)(sin-1x)1-x2 dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_(1/sqrt(2))^1  (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`

बेरीज

उत्तर

Let I = `int_(1/sqrt(2))^1  (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`

= `int_(1/sqrt(2))^1 (("e"^(pi/2 - sin^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`   ......`[∵ sin^-1x + cos^-1x = pi/2]`

Put sin−1x = t

∴ `1/sqrt(1 - x^2)  "d"x` = dt

When x = `1/sqrt(2)`, t = `pi/4` and when x = 1, t = `pi/2`

∴ I = `int_(pi/4)^(pi/2) ("e"^(pi/2 - "t"))"t"  "dt"`

= `["t" int"e"^(pi/2 - "t") "dt"]_(pi/4)^(pi/2) - int_(pi/4)^(pi/2)["d"/("dt") ("t") int"e"^(pi/2 - "t")  "dt"]  "dt"`

= `["t"* ("e"^(pi/2 - "t"))/(-1)]_(pi/4)^(pi/2) - int_(pi/4)^(pi/2) 1* ("e"^(pi/2 - "t"))/(-1)  "dt"`

= `-(pi/2 "e"^0 - pi/4 "e"^(pi/4)) + int_(pi/4)^(pi/2) "e"^(pi/2 - "t")  "dt"`

= `-(pi/2 - pi/4 "e"^(pi/4)) + [("e"^(pi/2 - "t"))/(-1)]_(pi/4)^(pi/2)`

= `- pi/2 + pi/4 "e"^(pi/4) - ("e"^0 - "e"^(pi/4))`

= `- pi/2 + pi/4 "e"^(pi/4) - 1 + "e"^(pi/4)`

∴ I = `"e"^(pi/4) (pi/4 + 1) - (pi/2 + 1)`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.4: Definite Integration - Long Answers III

संबंधित प्रश्‍न

Evaluate: `int_0^(pi/2) x sin x.dx`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.


`int_0^(x/4) sqrt(1 + sin 2x)  "d"x` =


`int_(pi/5)^((3pi)/10)  sinx/(sinx + cosx)  "d"x` =


Let I1 = `int_"e"^("e"^2)  1/logx  "d"x` and I2 = `int_1^2 ("e"^x)/x  "d"x` then 


`int_0^4 1/sqrt(4x - x^2)  "d"x` =


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x  "d"x`


Evaluate: `int_0^1 1/(1 + x^2)  "d"x`


Evaluate: `int_0^(pi/2)  (sin2x)/(1 +  sin^2x)  "d"x`


Evaluate: `int_0^1(x + 1)^2  "d"x`


Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x)  "d"x`


Evaluate: `int_0^pi cos^2 x  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_0^(pi/4)  cosx/(4 - sin^2 x)  "d"x`


Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x)  "d"x`


Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2)  "d"x`


Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2)  "d"x`


Evaluate: `int_0^1 x* tan^-1x  "d"x`


Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)  "d"x`


Evaluate: `int_0^(pi/2) 1/(5 + 4cos x)  "d"x`


Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2))  "d"x`


Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2)  "d"x`


Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2))  "d"x`


Evaluate: `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`


Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`


`int_0^(π/2) sin^6x cos^2x.dx` = ______.


If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.


Evaluate:

`int_-4^5 |x + 3|dx`


Evaluate:

`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`


Evaluate:

`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`


`int_0^1 x^2/(1 + x^2)dx` = ______.


Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`


Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`


If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×