Advertisements
Advertisements
प्रश्न
Evaluate: `int_(1/sqrt(2))^1 (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2) "d"x`
उत्तर
Let I = `int_(1/sqrt(2))^1 (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2) "d"x`
= `int_(1/sqrt(2))^1 (("e"^(pi/2 - sin^-1x))(sin^-1x))/sqrt(1 - x^2) "d"x` ......`[∵ sin^-1x + cos^-1x = pi/2]`
Put sin−1x = t
∴ `1/sqrt(1 - x^2) "d"x` = dt
When x = `1/sqrt(2)`, t = `pi/4` and when x = 1, t = `pi/2`
∴ I = `int_(pi/4)^(pi/2) ("e"^(pi/2 - "t"))"t" "dt"`
= `["t" int"e"^(pi/2 - "t") "dt"]_(pi/4)^(pi/2) - int_(pi/4)^(pi/2)["d"/("dt") ("t") int"e"^(pi/2 - "t") "dt"] "dt"`
= `["t"* ("e"^(pi/2 - "t"))/(-1)]_(pi/4)^(pi/2) - int_(pi/4)^(pi/2) 1* ("e"^(pi/2 - "t"))/(-1) "dt"`
= `-(pi/2 "e"^0 - pi/4 "e"^(pi/4)) + int_(pi/4)^(pi/2) "e"^(pi/2 - "t") "dt"`
= `-(pi/2 - pi/4 "e"^(pi/4)) + [("e"^(pi/2 - "t"))/(-1)]_(pi/4)^(pi/2)`
= `- pi/2 + pi/4 "e"^(pi/4) - ("e"^0 - "e"^(pi/4))`
= `- pi/2 + pi/4 "e"^(pi/4) - 1 + "e"^(pi/4)`
∴ I = `"e"^(pi/4) (pi/4 + 1) - (pi/2 + 1)`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_0^(pi/2) x sin x.dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
`int_0^(x/4) sqrt(1 + sin 2x) "d"x` =
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
Let I1 = `int_"e"^("e"^2) 1/logx "d"x` and I2 = `int_1^2 ("e"^x)/x "d"x` then
`int_0^4 1/sqrt(4x - x^2) "d"x` =
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x "d"x`
Evaluate: `int_0^1 1/(1 + x^2) "d"x`
Evaluate: `int_0^(pi/2) (sin2x)/(1 + sin^2x) "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x) "d"x`
Evaluate: `int_0^pi cos^2 x "d"x`
Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x) "d"x`
Evaluate: `int_0^(pi/4) cosx/(4 - sin^2 x) "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2) "d"x`
Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2) "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2) "d"x`
Evaluate: `int_0^(pi/2) 1/(5 + 4cos x) "d"x`
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2)) "d"x`
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate:
`int_-4^5 |x + 3|dx`
Evaluate:
`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`
Evaluate:
`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`
`int_0^1 x^2/(1 + x^2)dx` = ______.
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`
If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.