हिंदी

Evaluate: ∫121 (ecos-1x)(sin-1x)1-x2 dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_(1/sqrt(2))^1  (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`

योग

उत्तर

Let I = `int_(1/sqrt(2))^1  (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`

= `int_(1/sqrt(2))^1 (("e"^(pi/2 - sin^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`   ......`[∵ sin^-1x + cos^-1x = pi/2]`

Put sin−1x = t

∴ `1/sqrt(1 - x^2)  "d"x` = dt

When x = `1/sqrt(2)`, t = `pi/4` and when x = 1, t = `pi/2`

∴ I = `int_(pi/4)^(pi/2) ("e"^(pi/2 - "t"))"t"  "dt"`

= `["t" int"e"^(pi/2 - "t") "dt"]_(pi/4)^(pi/2) - int_(pi/4)^(pi/2)["d"/("dt") ("t") int"e"^(pi/2 - "t")  "dt"]  "dt"`

= `["t"* ("e"^(pi/2 - "t"))/(-1)]_(pi/4)^(pi/2) - int_(pi/4)^(pi/2) 1* ("e"^(pi/2 - "t"))/(-1)  "dt"`

= `-(pi/2 "e"^0 - pi/4 "e"^(pi/4)) + int_(pi/4)^(pi/2) "e"^(pi/2 - "t")  "dt"`

= `-(pi/2 - pi/4 "e"^(pi/4)) + [("e"^(pi/2 - "t"))/(-1)]_(pi/4)^(pi/2)`

= `- pi/2 + pi/4 "e"^(pi/4) - ("e"^0 - "e"^(pi/4))`

= `- pi/2 + pi/4 "e"^(pi/4) - 1 + "e"^(pi/4)`

∴ I = `"e"^(pi/4) (pi/4 + 1) - (pi/2 + 1)`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.4: Definite Integration - Long Answers III

संबंधित प्रश्न

Evaluate: `int_0^(pi/2) x sin x.dx`


Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.


`int_0^1 (x^2 - 2)/(x^2 + 1)  "d"x` =


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x  "d"x`


Evaluate: `int_0^1 |x|  "d"x`


Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1)  "d"x`


Evaluate: `int_0^(pi/2)  (sin2x)/(1 +  sin^2x)  "d"x`


Evaluate: `int_0^1(x + 1)^2  "d"x`


Evaluate: `int_(pi/6)^(pi/3) sin^2 x  "d"x`


Evaluate: `int_0^pi cos^2 x  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`


Evaluate: `int_(-1)^1 |5x - 3|  "d"x`


Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)  "d"x`


Evaluate: `int_0^(pi/2) 1/(5 + 4cos x)  "d"x`


Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx))  "d"x`


Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x))  "d"x`


Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2))  "d"x`


Evaluate: `int_0^3 x^2 (3 - x)^(5/2)  "d"x`


Evaluate: `int_0^1 "t"^2 sqrt(1 - "t")  "dt"`


Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2))  "d"x`


Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`


Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2)  "d"x`


Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2))  "d"x`


Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`


`int_0^(π/2) sin^6x cos^2x.dx` = ______.


Evaluate:

`int_(π/4)^(π/2) cot^2x  dx`.


Evaluate: `int_0^1 tan^-1(x/sqrt(1 - x^2))dx`.


Evaluate:

`int_(-π/2)^(π/2) |sinx|dx`


Evaluate:

`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`


Evaluate:

`int_0^(π/2) sinx/(1 + cosx)^3 dx`


If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×