Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
उत्तर
Let I = `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
= `int_0^1 (1 -"t")^2 sqrt(1 - (1 - "t")) "dt"` ......`[∵ int_0^"a" "f"(x)"d"x = int_0^"a" "f"("a" - x)"d"x]`
= `int_0^1 (1 - 2"t" + "t"^2)sqrt("t") "dt"`
= `int_0^1("t"^(1/2) - 2"t"^(3/2) + "t"^(5/2))"dt"`
= `int_0^1 "t"^(1/2) "dt" - 2 int_0^1 "t"^(3/2) "dt" + int_0^1 "t"^(5/2) "dt"`
= `[("t"^(3/2))/(3/2)]_0^1 - 2[("t"^(5/2))/(5/2)]_0^1 + [("t"^(7/2))/(7/2)]_0^1`
= `2/3(1^(3/2) - 0) - 4/5(1^(5/2) - 0) + 2/7(1^(7/2) - 0)`
= `2/3 - 4/5 + 2/7`
= `(70 - 84 + 30)/105`
∴ I = `16/105`
APPEARS IN
संबंधित प्रश्न
`int_0^(x/4) sqrt(1 + sin 2x) "d"x` =
If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
`int_0^1 (x^2 - 2)/(x^2 + 1) "d"x` =
`int_0^4 1/sqrt(4x - x^2) "d"x` =
Evaluate: `int_(pi/6)^(pi/3) cosx "d"x`
Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x "d"x`
Evaluate: `int_0^(pi/2) (sin2x)/(1 + sin^2x) "d"x`
Evaluate: `int_0^(pi/2) cos^3x "d"x`
Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x) "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`
Evaluate: `int_(-1)^1 |5x - 3| "d"x`
Evaluate: `int_0^(pi/4) sec^4x "d"x`
Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2)) "d"x`
Evaluate: `int_0^(1/2) 1/((1 - 2x^2) sqrt(1 - x^2)) "d"x`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
Evaluate: `int_0^(π/4) sec^4 x dx`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate:
`int_0^(π/2) sin^8x dx`
Evaluate:
`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`
`int_0^1 x^2/(1 + x^2)dx` = ______.
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`