हिंदी

Evaluate: ∫0π4 cos2x1+cos2x+sin2x dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`

योग

उत्तर

Let I = `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`

= `int_0^(pi/4)  (cos^2x - sin^2x)/(2cos^2x + 2sinx cosx)  "d"x`

= `int_0^(pi/4)  ((cosx + sinx)(cosx - sin x))/(2cos(cosx + sinx))  "d"x`

= `1/2 int_0^(pi/4)  (cosx - sinx)/cosx  "d"x`

= `1/2 int_0^(pi/4) (1 - tan x)  "d"x`

= `1/2 int_0^(pi/4)  "d"x - 1/2 int_0^(pi/4) tanx  "d"x`

= `1/2[x]_0^(pi/4) - 1/2[log|sec x|]_0^(pi/4)`

= `1/2(pi/4 - 0) - 1/2[log|sec  pi/4| - log|sec 0|]`

= `pi/8 - 1/2 (log sqrt(2) - log 1)`

= `pi/8 - 1/2 (log sqrt(2) - 0)`

∴ I = `1/2(pi/4 - log sqrt(2))`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.4: Definite Integration - Long Answers III

संबंधित प्रश्न

Evaluate: `int_0^(π/4) cot^2x.dx`


Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`


`int_0^(x/4) sqrt(1 + sin 2x)  "d"x` =


Let I1 = `int_"e"^("e"^2)  1/logx  "d"x` and I2 = `int_1^2 ("e"^x)/x  "d"x` then 


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_(pi/6)^(pi/3) cosx  "d"x`


Evaluate: `int_0^1 1/(1 + x^2)  "d"x`


Evaluate: `int_0^1 |x|  "d"x`


Evaluate: `int_0^1 1/sqrt(1 - x^2)  "d"x`


Evaluate: `int_1^2 x/(1 + x^2)  "d"x`


Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1)  "d"x`


Evaluate: `int_0^(pi/2)  (sin2x)/(1 +  sin^2x)  "d"x`


Evaluate: `int_0^1(x + 1)^2  "d"x`


Evaluate: `int_0^pi cos^2 x  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13)  "d"x`


Evaluate: `int_0^1 x* tan^-1x  "d"x`


Evaluate: `int_0^(pi/2) 1/(5 + 4cos x)  "d"x`


Evaluate: `int_0^3 x^2 (3 - x)^(5/2)  "d"x`


Evaluate: `int_0^(pi/4)  (sec^2x)/(3tan^2x + 4tan x + 1)  "d"x`


Evaluate: `int_(1/sqrt(2))^1  (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1)  "d"x`


Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`


Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2)  "d"x`


Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2))  "d"x`


Evaluate: `int_0^(π/4) sec^4 x  dx`


Evaluate:

`int_(-π/2)^(π/2) |sinx|dx`


The value of `int_2^(π/2) sin^3x  dx` = ______.


Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`


Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`


Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`


If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×