Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
उत्तर
Let I = `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x) "d"x`
= `int_0^(pi/4) (cos^2x - sin^2x)/(2cos^2x + 2sinx cosx) "d"x`
= `int_0^(pi/4) ((cosx + sinx)(cosx - sin x))/(2cos(cosx + sinx)) "d"x`
= `1/2 int_0^(pi/4) (cosx - sinx)/cosx "d"x`
= `1/2 int_0^(pi/4) (1 - tan x) "d"x`
= `1/2 int_0^(pi/4) "d"x - 1/2 int_0^(pi/4) tanx "d"x`
= `1/2[x]_0^(pi/4) - 1/2[log|sec x|]_0^(pi/4)`
= `1/2(pi/4 - 0) - 1/2[log|sec pi/4| - log|sec 0|]`
= `pi/8 - 1/2 (log sqrt(2) - log 1)`
= `pi/8 - 1/2 (log sqrt(2) - 0)`
∴ I = `1/2(pi/4 - log sqrt(2))`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_0^(π/4) cot^2x.dx`
Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`
`int_0^(x/4) sqrt(1 + sin 2x) "d"x` =
Let I1 = `int_"e"^("e"^2) 1/logx "d"x` and I2 = `int_1^2 ("e"^x)/x "d"x` then
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_(pi/6)^(pi/3) cosx "d"x`
Evaluate: `int_0^1 1/(1 + x^2) "d"x`
Evaluate: `int_0^1 |x| "d"x`
Evaluate: `int_0^1 1/sqrt(1 - x^2) "d"x`
Evaluate: `int_1^2 x/(1 + x^2) "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_0^(pi/2) (sin2x)/(1 + sin^2x) "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_0^pi cos^2 x "d"x`
Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x) "d"x`
Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13) "d"x`
Evaluate: `int_0^1 x* tan^-1x "d"x`
Evaluate: `int_0^(pi/2) 1/(5 + 4cos x) "d"x`
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_(1/sqrt(2))^1 (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^1 (1/(1 + x^2)) sin^-1 ((2x)/(1 + x^2)) "d"x`
Evaluate: `int_0^(π/4) sec^4 x dx`
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
The value of `int_2^(π/2) sin^3x dx` = ______.
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`
Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`
If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.