हिंदी

Evaluate: ∫0πx⋅sinx⋅cos2x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`

योग

उत्तर

Let I = `int_0^pi x*sinx*cos^2x* "d"x`   ......(i)

∴ I = `int_0^pi (pi - x)*sin(pi - x)*[cos(pi - x)]^2  "d"x`    ......`[∵ int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x]`

∴ I = `int_0^pi (pi - x)*sinx( - cos x)^2  "d"x`

∴ I = `int_0^pi (pi - x)* sinx cos^2x  "d"x`  .....(ii)

Adding (i) and (ii), we get

2I = `int_0^pi x* sinx * cos^2x  "d"x + int_0^pi (pi - x) * sinx cos^2x  "d"x`

= `int_0pi (x + pi - x)* sinx cos^2x  "d"x`

∴ 2I = `pi int_0^pi sinx cos^2x  "d"x`

Put cos x = t

∴ − sin x dx = dt

∴ sin x dx = − dt

When x = 0, t = 1 and when x = π, t = −1

∴ 2I = `pi int_1^(-1)  "t"^2 (- "dt")`

∴ I = `pi/2 int_(-1)^1  "t"^2  "dt"`  .......`[∵ int_"a"^"b" "f"(x)  "d"x = -int_"b"^"a"  "f"(x)  "d"x]`

= `pi/2 xx 2 int_0^1 "t"^2  "dt"`  ......[∵ t2 is an even function]

= `pi ["t"^2/3]_0^1`

= `pi/3(1^3 - 0)`

∴ I = `pi/3`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.4: Definite Integration - Long Answers III

संबंधित प्रश्न

Evaluate: `int_0^(π/4) cot^2x.dx`


Evaluate: `int_0^(pi/2) x sin x.dx`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.


`int_0^(x/4) sqrt(1 + sin 2x)  "d"x` =


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_(pi/6)^(pi/3) cosx  "d"x`


Evaluate: `int_0^(pi/4) sec^2 x  "d"x`


Evaluate: `int_0^1 |x|  "d"x`


Evaluate: `int_0^1 1/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1)  "d"x`


Evaluate: `int_0^1(x + 1)^2  "d"x`


Evaluate: `int_(pi/6)^(pi/3) sin^2 x  "d"x`


Evaluate: `int_0^pi cos^2 x  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_0^(pi/4)  cosx/(4 - sin^2 x)  "d"x`


Evaluate: `int_1^3 (cos(logx))/x  "d"x`


Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`


Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x)  "d"x`


Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2)  "d"x`


Evaluate: `int_0^(pi/4) sec^4x  "d"x`


Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx))  "d"x`


Evaluate: `int_0^3 x^2 (3 - x)^(5/2)  "d"x`


Evaluate: `int_0^1 "t"^2 sqrt(1 - "t")  "dt"`


Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2)  "d"x`


Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`


Evaluate: `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`


Evaluate: `int_0^(π/4) sec^4 x  dx`


`int_0^(π/2) sin^6x cos^2x.dx` = ______.


If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.


The value of `int_2^(π/2) sin^3x  dx` = ______.


Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`


Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×