Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
उत्तर
Let I = `int_0^pi x*sinx*cos^2x* "d"x` ......(i)
∴ I = `int_0^pi (pi - x)*sin(pi - x)*[cos(pi - x)]^2 "d"x` ......`[∵ int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x]`
∴ I = `int_0^pi (pi - x)*sinx( - cos x)^2 "d"x`
∴ I = `int_0^pi (pi - x)* sinx cos^2x "d"x` .....(ii)
Adding (i) and (ii), we get
2I = `int_0^pi x* sinx * cos^2x "d"x + int_0^pi (pi - x) * sinx cos^2x "d"x`
= `int_0pi (x + pi - x)* sinx cos^2x "d"x`
∴ 2I = `pi int_0^pi sinx cos^2x "d"x`
Put cos x = t
∴ − sin x dx = dt
∴ sin x dx = − dt
When x = 0, t = 1 and when x = π, t = −1
∴ 2I = `pi int_1^(-1) "t"^2 (- "dt")`
∴ I = `pi/2 int_(-1)^1 "t"^2 "dt"` .......`[∵ int_"a"^"b" "f"(x) "d"x = -int_"b"^"a" "f"(x) "d"x]`
= `pi/2 xx 2 int_0^1 "t"^2 "dt"` ......[∵ t2 is an even function]
= `pi ["t"^2/3]_0^1`
= `pi/3(1^3 - 0)`
∴ I = `pi/3`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_0^(π/4) cot^2x.dx`
Evaluate: `int_0^(pi/2) x sin x.dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.
`int_0^(x/4) sqrt(1 + sin 2x) "d"x` =
`int_0^(pi/2) log(tanx) "d"x` =
Evaluate: `int_(pi/6)^(pi/3) cosx "d"x`
Evaluate: `int_0^(pi/4) sec^2 x "d"x`
Evaluate: `int_0^1 |x| "d"x`
Evaluate: `int_0^1 1/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_0^1(x + 1)^2 "d"x`
Evaluate: `int_(pi/6)^(pi/3) sin^2 x "d"x`
Evaluate: `int_0^pi cos^2 x "d"x`
Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x) "d"x`
Evaluate: `int_0^(pi/4) cosx/(4 - sin^2 x) "d"x`
Evaluate: `int_1^3 (cos(logx))/x "d"x`
Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2) "d"x`
Evaluate: `int_0^(pi/4) sec^4x "d"x`
Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx)) "d"x`
Evaluate: `int_0^3 x^2 (3 - x)^(5/2) "d"x`
Evaluate: `int_0^1 "t"^2 sqrt(1 - "t") "dt"`
Evaluate: `int_(-1)^1 (1 + x^2)/(9 - x^2) "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
Evaluate: `int_0^pi 1/(3 + 2sinx + cosx) "d"x`
Evaluate: `int_0^(π/4) sec^4 x dx`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
The value of `int_2^(π/2) sin^3x dx` = ______.
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Prove that: `int_0^1 logx/sqrt(1 - x^2)dx = π/2 log(1/2)`