Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2) "d"x`
उत्तर
Let I = `int_0^1 1/sqrt(3 + 2x - x^2) "d"x`
= `int_0^1 1/sqrt(4 - 1 + 2x - x^2) "d"x`
= `int_0^1 1/sqrt(4 - (x^2 - 2x + 1)) "d"x`
= `int_0^1 1/sqrt((2)^2 - (x - 1)^2) "d"x`
= `[sin^-1 ((x - 1)/2)]_0^1`
= `sin^-1 (0) - sin^-1 (1/2)`
= `0 - (- pi/6)`
∴ I = `pi/6`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_0^(pi/2) x sin x.dx`
`int_0^(x/4) sqrt(1 + sin 2x) "d"x` =
If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.
`int_(pi/5)^((3pi)/10) sinx/(sinx + cosx) "d"x` =
Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x "d"x`
Evaluate: `int_0^1 1/(1 + x^2) "d"x`
Evaluate: `int_0^1 |x| "d"x`
Evaluate: `int_0^1 "e"^x/sqrt("e"^x - 1) "d"x`
Evaluate: `int_0^(pi/2) cos^3x "d"x`
Evaluate: `int_0^(pi/4) cosx/(4 - sin^2 x) "d"x`
Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x) "d"x`
Evaluate: `int_(-1)^1 |5x - 3| "d"x`
Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13) "d"x`
Evaluate: `int_0^(pi/4) sec^4x "d"x`
Evaluate: `int_0^(pi/2) 1/(5 + 4cos x) "d"x`
Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx)) "d"x`
Evaluate: `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x + 1) "d"x`
Evaluate: `int_(1/sqrt(2))^1 (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2) "d"x`
Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1) "d"x`
Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`
Evaluate: `int_0^(pi/4) log(1 + tanx) "d"x`
Evaluate: `int_0^pi 1/(3 + 2sinx + cosx) "d"x`
`int_0^(π/2) sin^6x cos^2x.dx` = ______.
If `int_2^e [1/logx - 1/(logx)^2].dx = a + b/log2`, then ______.
Evaluate:
`int_(π/4)^(π/2) cot^2x dx`.
Evaluate:
`int_(-π/2)^(π/2) |sinx|dx`
Evaluate `int_(π/6)^(π/3) cos^2x dx`
Evaluate:
`int_-4^5 |x + 3|dx`
Evaluate:
`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`
`int_0^1 x^2/(1 + x^2)dx` = ______.
Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`
Evaluate:
`int_0^(π/2) sinx/(1 + cosx)^3 dx`