हिंदी

Evaluate: ∫0π13+2sinx+cosx dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`

योग

उत्तर

Let I = `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`

Put `tan (x/2)` = t

∴ x = 2tan−1t

∴ dx = `(2"dt")/(1 + "t"^2)`, sin x = `(2"t")/(1 + "t"^2)` and cos x = `(1 - "t"^2)/(1 + "t"^2)`

When x = 0, t = 0 and when x = π, t = ∞

∴ I = `int_0^∞ 1/(3 + 2((2"t")/(1 + "t"^2)) + (1 - "t"^2)/(1 + "t"^2)) xx (2  "dt")/(1 + "t"^2)`

= `int_0^∞ (2  "dt")/(3 + 3"t"^2 + 4"t" + 1 - "t"^2)`

= `int_0^∞ (2  "dt")/(2"t"^2 + 4"t" + 4)`

= `int_0^∞  "dt"/("t"^2 + 2"t" + 2)`

= `int_0^∞  "dt"/("t"^2 + 2"t" + 1 + 1)`

= `int_0^∞  "dt"/(("t" + 1)^2 + 1^2)`

= `[tan^-1 ("t" + 1)]_0^∞`

= `tan^-1(1 + ∞) - tan^-1(1 + 0)`

= `tan^-1(∞) - tan^-1 (1)`

= `pi/2 - pi/4`

∴ I = = `pi/4`

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.4: Definite Integration - Long Answers III

संबंधित प्रश्न

Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`


Evaluate: `int_0^(pi/2) x sin x.dx`


`int_0^(x/4) sqrt(1 + sin 2x)  "d"x` =


If `int_0^1 ("d"x)/(sqrt(1 + x) - sqrt(x)) = "k"/3`, then k is equal to ______.


`int_0^1 (x^2 - 2)/(x^2 + 1)  "d"x` =


`int_0^4 1/sqrt(4x - x^2)  "d"x` =


`int_0^(pi/2) log(tanx)  "d"x` =


Evaluate: `int_0^1 1/(1 + x^2)  "d"x`


Evaluate: `int_0^(pi/4) sec^2 x  "d"x`


Evaluate: `int_1^2 x/(1 + x^2)  "d"x`


Evaluate: `int_0^(pi/2)  (sin2x)/(1 +  sin^2x)  "d"x`


Evaluate: `int_(pi/6)^(pi/3) sin^2 x  "d"x`


Evaluate: `int_0^(pi/2) cos^3x  "d"x`


Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`


Evaluate: `int_3^8 (11 - x)^2/(x^2 + (11 - x)^2)  "d"x`


Evaluate: `int_(-1)^1 |5x - 3|  "d"x`


Evaluate: `int_(-4)^2 1/(x^2 + 4x + 13)  "d"x`


Evaluate: `int_0^1 x* tan^-1x  "d"x`


Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)  "d"x`


Evaluate: `int_0^(pi/4) sec^4x  "d"x`


Evaluate: `int_0^(pi/2) cos x/((1 + sinx)(2 + sinx))  "d"x`


Evaluate: `int_0^"a" 1/(x + sqrt("a"^2 - x^2))  "d"x`


Evaluate: `int_0^(pi/4)  (sec^2x)/(3tan^2x + 4tan x + 1)  "d"x`


Evaluate: `int_0^1 (log(x + 1))/(x^2 + 1)  "d"x`


Evaluate: `int_0^pi x*sinx*cos^2x* "d"x`


Evaluate: `int_0^(pi/4) log(1 + tanx)  "d"x`


`int_0^(π/2) sin^6x cos^2x.dx` = ______.


Evaluate:

`int_(π/4)^(π/2) cot^2x  dx`.


Evaluate:

`int_0^(π/2) sin^8x  dx`


Evaluate `int_(π/6)^(π/3) cos^2x  dx`


Evaluate:

`int_-4^5 |x + 3|dx`


The value of `int_2^(π/2) sin^3x  dx` = ______.


Evaluate:

`int_0^(π/2) (sin 2x)/(1 + sin^4x)dx`


`int_0^1 x^2/(1 + x^2)dx` = ______.


Find the value of ‘a’ if `int_2^a (x + 1)dx = 7/2`


Evaluate:

`int_0^(π/2) sinx/(1 + cosx)^3 dx`


If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×