मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫π4π2cosθ[cos θ2+sin θ2]3⋅dθ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`

बेरीज

उत्तर

Let I = `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`

= `int_(pi/4)^(pi/2) (cos^2  theta/2 - sin^2  theta/2)/[cos  theta/2 + sin  theta/2]^3*d theta`

= `int_(pi/4)^(pi/2)((cos  theta/2 - sin  theta/2)(cos  theta/2 + sin  theta/2))/[cos  theta/2 + sin  theta/2]^3*d theta`

= `int_(pi/4)^(pi/2) (cos  theta/2 - sin  theta/2)/[cos  theta/2 + sin  theta/2]^2*d theta`

Put `cos  theta/2 - sin  theta/2` = t

∴ `(-1/2 sin  theta/2 +1/2 cos  theta/2)*d theta` = dt

∴ `(cos  theta/2 - sin  theta/2)*d theta = 2*dt`

When θ = `pi/(4), t = cos  pi/(8) + sin  pi/(8)`

When θ = `pi/(2), t = cos  pi/(4) + sin  pi/(4) = (1)/sqrt(2) + (1)/sqrt(2) = sqrt(2)`

∴  I = `int_(cos  pi/8 + sin  pi/8)^sqrt(2) (1)/t^2* 2dt`

= `2 int_(cos  pi/8 + sin  pi/8)^sqrt(2) t^-2*dt`

= `2[(t^-1)/-1]_(cos  pi/8 + sin  pi/8)^sqrt(2)`

= `[(-2)/t]_(cos  pi/8 + sin  pi/8)^sqrt(2)`

= `- (2)/sqrt(2) + (2)/(cos  pi/8 + sin  pi/8)`

= `(2)/(cos  pi/8 + sin  pi/8) - sqrt(2)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Definite Integration
Miscellaneous Exercise 4 | Q 2.02 | पृष्ठ १७६

संबंधित प्रश्‍न

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`


Evaluate:

`int_0^(pi/4) sqrt(1 + sin 2x)*dx`


Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate : `int_1^3 (cos(logx))/x*dx`


Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`


Evaluate the following : `int_0^pi x sin x cos^2x*dx`


Choose the correct option from the given alternatives : 

If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to


Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following : `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`


Evaluate the following : `int_(-2)^(3) |x - 2|*dx`


Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.


Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`


Choose the correct alternative :

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


Evaluate `int_0^1 "e"^(x^2)*"x"^3  "d"x`


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite intergral:

`int_1^3 logx  dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.


Evaluate:

`int_0^1 |x| dx`


Evaluate the following definite intergral:

`int _1^3logxdx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/ ((9x^2 -1)) dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Solve the following.

`int_1^3x^2logx  dx`


Evaluate the integral.

`int_-9^9 x^3/(4-x^2) dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5).dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×