Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
उत्तर
Let I = `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
= `int_(pi/4)^(pi/2) (cos^2 theta/2 - sin^2 theta/2)/[cos theta/2 + sin theta/2]^3*d theta`
= `int_(pi/4)^(pi/2)((cos theta/2 - sin theta/2)(cos theta/2 + sin theta/2))/[cos theta/2 + sin theta/2]^3*d theta`
= `int_(pi/4)^(pi/2) (cos theta/2 - sin theta/2)/[cos theta/2 + sin theta/2]^2*d theta`
Put `cos theta/2 - sin theta/2` = t
∴ `(-1/2 sin theta/2 +1/2 cos theta/2)*d theta` = dt
∴ `(cos theta/2 - sin theta/2)*d theta = 2*dt`
When θ = `pi/(4), t = cos pi/(8) + sin pi/(8)`
When θ = `pi/(2), t = cos pi/(4) + sin pi/(4) = (1)/sqrt(2) + (1)/sqrt(2) = sqrt(2)`
∴ I = `int_(cos pi/8 + sin pi/8)^sqrt(2) (1)/t^2* 2dt`
= `2 int_(cos pi/8 + sin pi/8)^sqrt(2) t^-2*dt`
= `2[(t^-1)/-1]_(cos pi/8 + sin pi/8)^sqrt(2)`
= `[(-2)/t]_(cos pi/8 + sin pi/8)^sqrt(2)`
= `- (2)/sqrt(2) + (2)/(cos pi/8 + sin pi/8)`
= `(2)/(cos pi/8 + sin pi/8) - sqrt(2)`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite intergral:
`int_1^3 logx dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate:
`int_0^1 |x| dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`