हिंदी

Evaluate: ∫0∞xe-x.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^oo xe^-x.dx`

योग

उत्तर

`int_0^∞ xe^-x.dx`

= `[x int e^-x.dx]_0^∞ - int_0^∞[d/dx (x) int e^-x.dx].dx`

= `[x((e^-x)/-1)]_0^∞ - int^∞ 1.(e^-x)/((-1)).dx`

= `[- x.e^x]_0^∞ + int_0^∞ e^-x.dx`

= `[x.e^-x]_0^∞ + [e^-x/-1]_0^∞`

= `[x.e^-x]_0^∞ - [-e^x]_0^∞`

= `[∞.e^-∞-0.e^-0] - [e^-∞-e^-0]`

= `[0 - 0] - [0-1/e^0]`

= `- [0-1/1]`

= 1.       ...[∵ e0 = 1, e–x = 0, when x = ∞]

shaalaa.com
Methods of Evaluation and Properties of Definite Integral
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Exercise 4.2 [पृष्ठ १७१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Exercise 4.2 | Q 1.15 | पृष्ठ १७१

संबंधित प्रश्न

Evaluate: `int_0^1 (x^2 - 2)/(x^2 + 1).dx`


Evaluate: `int_0^π sin^3x (1 + 2cosx)(1 + cosx)^2.dx`


Evaluate the following:

`int_0^a (1)/(x + sqrt(a^2 - x^2)).dx`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) (sin^2x*dx)/(1 + cosx)^2` = ______.


`int_0^(x/4) sqrt(1 + sin 2x)  "d"x` =


Evaluate: `int_(pi/6)^(pi/3) cosx  "d"x`


Evaluate: `int_(- pi/4)^(pi/4) x^3 sin^4x  "d"x`


Evaluate: `int_0^(pi/4) sec^2 x  "d"x`


Evaluate: `int_0^1 |x|  "d"x`


Evaluate: `int_0^1 1/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^(pi/2)  (sin2x)/(1 +  sin^2x)  "d"x`


Evaluate: `int_(pi/6)^(pi/3) sin^2 x  "d"x`


Evaluate: `int_0^(pi/2) sqrt(1 - cos 4x)  "d"x`


Evaluate: `int_0^pi cos^2 x  "d"x`


Evaluate: `int_0^(pi/4) (tan^3x)/(1 + cos 2x)  "d"x`


Evaluate: `int_0^(pi/2) (sin^2x)/(1 + cos x)^2 "d"x`


Evaluate: `int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x)  "d"x`


Evaluate: `int_0^(pi/2) (sin^4x)/(sin^4x + cos^4x)  "d"x`


Evaluate: `int_0^1 1/sqrt(3 + 2x - x^2)  "d"x`


Evaluate: `int_0^1 x* tan^-1x  "d"x`


Evaluate: `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)  "d"x`


Evaluate: `int_0^(pi/2) 1/(5 + 4cos x)  "d"x`


Evaluate: `int_(-1)^1 1/("a"^2"e"^x + "b"^2"e"^(-x))  "d"x`


Evaluate: `int_0^1 "t"^2 sqrt(1 - "t")  "dt"`


Evaluate: `int_0^(pi/4)  (sec^2x)/(3tan^2x + 4tan x + 1)  "d"x`


Evaluate: `int_(1/sqrt(2))^1  (("e"^(cos^-1x))(sin^-1x))/sqrt(1 - x^2)  "d"x`


Evaluate: `int_0^(pi/4)  (cos2x)/(1 + cos 2x + sin 2x)  "d"x`


Evaluate: `int_0^pi 1/(3 + 2sinx + cosx)  "d"x`


`int_0^(π/2) sin^6x cos^2x.dx` = ______.


Evaluate:

`int_(-π/2)^(π/2) |sinx|dx`


Evaluate:

`int_-4^5 |x + 3|dx`


Evaluate:

`int_(π/6)^(π/3) (root(3)(sinx))/(root(3)(sinx) + root(3)(cosx))dx`


`int_0^1 x^2/(1 + x^2)dx` = ______.


Evaluate `int_(-π/2)^(π/2) sinx/(1 + cos^2x)dx`


If `int_0^π f(sinx)dx = kint_0^π f(sinx)dx`, then find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×