Advertisements
Advertisements
Question
Choose correct alternatives :
The vector equation of line 2x – 1 = 3y + 2 = z – 2 is ______.
Options
`barr = (1/2hati - 2/3hatj + 2hatk) + lambda(3hati + 2hatj + 6hatk)`
`barr = hati - hatj + (2hati + hatj + hatk)`
`barr = (1/2hati - hatj) + lambda(hati - 2hatj + 6hatk)`
`barr = (hati + hatj) + lambda(hati - 2hatj + 6hatk)`
Solution
The vector equation of line 2x – 1 = 3y + 2 = z – 2 is `bb(underline(barr = (1/2hati - 2/3hatj + 2hatk) + lambda(3hati + 2hatj + 6hatk))`
RELATED QUESTIONS
Find the vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k" "and perpendicular to vectors" hat"i" + hat"j" + hat"k" and 2hat"i" - hat"j" + hat"k"`.
Find the Cartesian equations of the line passing through A(2, 2, 1) and B(1, 3, 0).
A(– 2, 3, 4), B(1, 1, 2) and C(4, –1, 0) are three points. Find the Cartesian equations of the line AB and show that points A, B, C are collinear.
A line passes through (3, –1, 2) and is perpendicular to lines `bar"r" = (hat"i" + hat"j" - hat"k") + lambda(2hat"i" - 2hat"j" + hat"k") and bar"r" = (2hat"i" + hat"j" - 3hat"k") + mu(hat"i" - 2hat"j" + 2hat"k")`. Find its equation.
Show that the line `(x - 2)/(1) = (y - 4)/(2) = (z + 4)/(-2)` passes through the origin.
Find the Cartesian equation of the plane passing through A(7, 8, 6) and parallel to the XY plane.
The foot of the perpendicular drawn from the origin to a plane is M(1,0,0). Find the vector equation of the plane.
Find the vector equation of the plane passing through the point A(– 2, 7, 5) and parallel to vector `4hat"i" - hat"j" + 3hat"k" and hat"i" + hat"j" + hat"k"`.
Find the cartesian equation of the plane `bar"r" = (5hat"i" - 2hat"j" - 3hat"k") + lambda(hat"i" + hat"j" + hat"k") + mu(hat"i" - 2hat"j" + 3hat"k")`.
Find the vector equation of the plane which makes intercepts 1, 1, 1 on the co-ordinates axes.
Find the vector equation of the line which passes through the point (3, 2, 1) and is parallel to the vector `2hat"i" + 2hat"j" - 3hat"k"`.
Find the Cartesian equations of the line which passes through the point (–2, 4, –5) and parallel to the line `(x + 2)/(3) = (y - 3)/(5) = (z + 5)/(6)`.
Find the Cartesian equations of the line which passes through the point (2, 1, 3) and perpendicular to the lines `(x - 1)/(1) = (y - 2)/(2) = (z - 3)/(3) and x/(-3) = y/(2) = z/(5)`.
Find the vector equation of the line which passes through the origin and intersect the line x – 1 = y – 2 = z – 3 at right angle.
Find the vector and Cartesian equations of the line passing through the point (–1, –1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z − 2.
The direction ratios of the line which is perpendicular to the two lines `(x - 7)/(2) = (y + 17)/(-3) = (z - 6)/(1) and (x + 5)/(1) = (y + 3)/(2) = (z - 4)/(-2)` are ______.
Find the vector equation of the plane passing through the points A(1, -2, 1), B(2, -1, -3) and C(0, 1, 5).
Solve the following :
Find the cartesian equation of the plane passing through A(1,-2, 3) and direction ratios of whose normal are 0, 2, 0.
Solve the following :
Find the cartesian equation of the plane passing through A(7, 8, 6) and parallel to the plane `bar"r".(6hat"i" + 8hat"j" + 7hat"k")` = 0.
Solve the following :
Find the vector equation of the plane passing through the point A(– 2, 3, 5) and parallel to the vectors `4hat"i" + 3hat"k" and hat"i" + hat"j"`.
Solve the following :
Find the cartesian equation of the plane `bar"r" = lambda(hat"i" + hat"j" - hat"k") + mu(hat"i" + 2hat"j" + 3hat"k")`.
Solve the following :
Find the vector equation of the plane passing through the origin and containing the line `bar"r" = (hat"i" + 4hat"j" + hat"k") + lambda(hat"i" + 2hat"j" + hat"k")`.
Solve the following :
Show that the lines x = y, z = 0 and x + y = 0, z = 0 intersect each other. Find the vector equation of the plane determined by them.
Find the Cartesian equations of the line passing through A(3, 2, 1) and B(1, 3, 1).
Find the cartesian equation of the plane passing through A(1, 2, 3) and the direction ratios of whose normal are 3, 2, 5.
Find the vector equation of the line `x/1 = (y - 1)/2 = (z - 2)/3`
Find the Cartesian equation of the line passing through A(1, 2, 3) and having direction ratios 2, 3, 7
Find the direction ratios of the line perpendicular to the lines
`(x - 7)/2 = (y + 7)/(-3) = (z - 6)/1` and `(x + 5)/1 = (y + 3)/2 = (z - 6)/(-2)`
Find the Cartesian equation of the line passing through A(1, 2, 3) and B(2, 3, 4)
Find the Cartesian equation of the line passing through (−1, −1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z – 2
Find the Cartesian and vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k"` and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `2hat"i" - hat"j" + hat"k"`
The point P lies on line A, B where A = (2, 4, 5} and B = (1, 2, 3). If z co-ordinate of point P is 3, the its y co-ordinate is ______.
The vector equation of the line passing through `4hati - hatj + 2hatk` and parallel to `-2hati - hatj + hatk` is ______
The cartesian equation of the line `overliner = (hati + hatj + hatk) + lambda(hatj + hatk)` is ______
The equation of line is `(x - 1)/2 = (y + 1)/(-2) = (z + 1)/1`. The co-ordinates of the point on the line at a distance of 3 units from the point (1, -1, -1) is ______
The equation of line equally inclined to co-ordinate axes and passing through (–3, 2, –5) is ______.
The centres of the circles x2 + y2 = 1, x2 + y2 + 6x – 2y = 1 and x2 + y2 – 12x + 4y = 1 are ______.
Find the Cartesian equation of the plane passing through A(–1, 2, 3), the direction ratios of whose normal are 0, 2, 5.
Find the vector equation of the line passing through the points A(2, 3, –1) and B(5, 1, 2).
Show that the lines `(x - 1)/1 = (y - 2)/2 = (z + 1)/-1` and `x/2 = (y - 3)/2 = z/(-1)` do not intersect.