English

Find the vector equation of the plane which makes intercepts 1, 1, 1 on the co-ordinates axes. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the vector equation of the plane which makes intercepts 1, 1, 1 on the co-ordinates axes.

Sum

Solution

The vector equation of the plane passing through `"A"(bara), "B"(barb), "C"(barc)`, where A, B, C are non-collinear is `bar"r".(bar"AB" xx bar"AC") = bar"a".(bar"AB" xx bar"AC")`             ...(1)

The required plane makes intercepts 1, 1, 1 on the coordinate axes.

∴ It passes through the three non-collinear points

A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1)

∴ `bar"a" = hat"i", bar"b" = hat"j", bar"c" = hat"k"`

`bar"AB" = bar"b" - bar"a" = hat"j" - hat"i" = -hat"i" + hat"j"`

∴ `bar"AC" = bar"c" - bar"a" = hat"k" - hat"i" = -hat"i" + hat"k"`

∴ `bar"AB" xx bar"AC" = |(hat"i", hat"j", hat"k"),(-1, 1, 0),(-1, 0, 1)|`

= `(1 - 0)hat"i" - (- 1 + 0)hat"j" + (0 + 1)hat"k"`

= `hat"i" + hat"j" + hat"k"`

Also, `bar"a".(bar"AB" xx bar"AC")` = `hat"i".(hat"i" + hat"j" + hat"k")`

= 1 × 1 + 0 × 1 + 0 × 1

= 1

∴  From (1), the vector equation of the required plane is `bar"r".(hat"i" + hat"j" + hat"k")` = 1.

shaalaa.com
Vector and Cartesian Equations of a Line
  Is there an error in this question or solution?
Chapter 6: Line and Plane - Exercise 6.3 [Page 216]

RELATED QUESTIONS

Find the vector equation of the line passing through the point having position vector `-2hat"i" + hat"j" + hat"k"  "and parallel to vector"  4hat"i" - hat"j" + 2hat"k"`.


Find the vector equation of the line passing through points having position vector `3hati + 4hatj - 7hatk and 6hati - hatj + hatk`.


Find the vector equation of line passing through the point having position vector `5hat"i" + 4hat"j" + 3hat"k"` and having direction ratios  –3, 4, 2.


Find the Cartesian equations of the line passing through A(2, 2, 1) and B(1, 3, 0).


A(– 2, 3, 4), B(1, 1, 2) and C(4, –1, 0) are three points. Find the Cartesian equations of the line AB and show that points A, B, C are collinear.


Show that the lines given by `(x + 1)/(-10) = (y + 3)/(-1) = (z - 4)/(1) and (x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/(4)` intersect. Also, find the coordinates of their point of intersection.


A line passes through (3, –1, 2) and is perpendicular to lines `bar"r" = (hat"i" + hat"j" - hat"k") + lambda(2hat"i" - 2hat"j" + hat"k") and bar"r" = (2hat"i" + hat"j" - 3hat"k") + mu(hat"i" - 2hat"j" + 2hat"k")`. Find its equation.


Find the Cartesian equations of the line which passes through the point (–2, 4, –5) and parallel to the line `(x + 2)/(3) = (y - 3)/(5) = (z + 5)/(6)`.


Find the Cartesian equations of the line passing through the point A(1, 1, 2) and perpendicular to the vectors `barb = hati + 2hatj + hatk and barc = 3hati + 2hatj - hatk`.


If the lines `(x - 1)/(2) = (y + 1)/(3) = (z -1)/(4) and (x- 2)/(1) = (y +m)/(2) = (z - 2)/(1)` intersect each other, find m.


Find the Cartesian equation of the line passing through the origin which is perpendicular to x – 1 = y – 2 = z – 1 and intersect the line `(x - 1)/(2) = (y + 1)/(3) = (z - 1)/(4)`.


Find the vector equation of the line whose Cartesian equations are y = 2 and 4x – 3z + 5 = 0.


Find the vector equation of the plane passing through the points A(1, -2, 1), B(2, -1, -3) and C(0, 1, 5).


Solve the following :

Find the vector equation of the plane passing through the point A(– 2, 3, 5) and parallel to the vectors `4hat"i" + 3hat"k" and hat"i" + hat"j"`.


Solve the following :

Find the vector equation of the plane which bisects the segment joining A(2, 3, 6) and B(4, 3, –2) at right angle.


Solve the following :

Show that the lines x = y, z = 0 and x + y = 0, z = 0 intersect each other. Find the vector equation of the plane determined by them.


Verify if the point having position vector `4hat"i" - 11hat"j" + 2hat"k"` lies on the line `bar"r" = (6hat"i" - 4hat"j" + 5hat"k") + lambda (2hat"i" + 7hat"j" + 3hat"k")`


Find the vector equation of the line passing through the point having position vector `4hat i - hat j + 2hat"k"` and parallel to the vector `-2hat i - hat j + hat k`.


Find the Cartesian equation of the plane passing through the points (3, 2, 1) and (1, 3, 1)


Find the vector equation of the line passing through the point having position vector `-hat"i"- hat"j" + 2hat"k"` and parallel to the line `bar"r" = (hat"i" + 2hat"j" + 3hat"k") + mu(3hat"i" + 2hat"j" + hat"k")`, µ is a parameter


Find the Cartesian equation of the plane passing through A(7, 8, 6)and parallel to XY plane


Find the Cartesian and vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k"` and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `2hat"i" - hat"j" + hat"k"`


The cartesian coordinates of the point on the parabola y2 = x whose parameter is ____________.


The vector equation of the line passing through `4hati - hatj + 2hatk` and parallel to `-2hati - hatj + hatk` is ______ 


The cartesian equation of the line `overliner = (hati + hatj + hatk) + lambda(hatj + hatk)` is ______


The equation of line is `(x - 1)/2 = (y + 1)/(-2) = (z + 1)/1`. The co-ordinates of the point on the line at a distance of 3 units from the point (1, -1, -1) is ______ 


What is the Cartesian product of A= {l, 2} and B= {a, b}?


Find the Cartesian equation of the plane passing through A(–1, 2, 3), the direction ratios of whose normal are 0, 2, 5.


Show that the lines `(x - 1)/1 = (y - 2)/2 = (z + 1)/-1` and `x/2 = (y - 3)/2 = z/(-1)` do not intersect.


If the line `(x - 1)/2 = (y + 1)/3 = z/4` lies in the plane 4x + 4y – kz = 0, then the value of k is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×