Advertisements
Advertisements
Question
Solve the following :
Find the vector equation of the plane which bisects the segment joining A(2, 3, 6) and B(4, 3, –2) at right angle.
Solution
The vector equation of the plane passing through `"A"(bara)` and perpendicular to the vector `bar"n"` is `bar"r".bar"n" = bar"a".bar"n"` ...(1)
The position vectors `bar"a" and bar"b"` of the given points A and B are `bar"a" = 2hat"i" + 3hat"j" + 6hat"k" and bar"b" = 4hat"i" + 3hat"j" - 2hat"k"`
If M is the midpoint of segment AB, the position vector `bar"m"` of M is given by
`bar"m" = (bar"a" + bar"b")/(2)`
= `((2hat"i" + 3hat"j" + 6hat"k") + (4hat"i" + 3hat"j" - 2hat"k"))/(2)`
= `(6hat"i" + 6hat"j" + 4hat"k")/(2)`
= `3hat"i" + 3hat"j" + 2hat"k"`
The plane passes through `"M"(bar"m")`.
AB is perpendicular to the plane
If `bar"n"` is normal to the plane, then `bar"n" = bar"AB"`
∴ `bar"n" = bar"b" - bar"a" = (4hat"i" + 3hat"j" - 2hat"k") - (2hat"i" + 3hat"j" + 6hat"k")`
= `2hat"i" - 8hat"k"`
∴ `bar"m".bar"n" = (3hat"i" + 3hat"j" + 2hat"k").(2hat"i" - 8hat"k")`
= (3)(2) + (3)(0) + (2)(– 8)
= 6 + 0 – 16
= – 10
∴ from (1), the vector equation of the required plane is `bar"r".bar"n" = bar"m".bar"n"`
i.e. `bar"r".(2hat"i" - 8hat"k")` = – 10
i.e. `bar"r".(hat"i" - 4hat"k")` = – 5.
APPEARS IN
RELATED QUESTIONS
Find the vector equation of line passing through the point having position vector `5hat"i" + 4hat"j" + 3hat"k"` and having direction ratios –3, 4, 2.
Find the vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k" "and perpendicular to vectors" hat"i" + hat"j" + hat"k" and 2hat"i" - hat"j" + hat"k"`.
Find the cartesian equations of the line passing through A(–1, 2, 1) and having direction ratios 2, 3, 1.
Find the Cartesian equations of the line passing through A(2, 2, 1) and B(1, 3, 0).
A(– 2, 3, 4), B(1, 1, 2) and C(4, –1, 0) are three points. Find the Cartesian equations of the line AB and show that points A, B, C are collinear.
Find the vector equation of the plane passing through the point A(– 2, 7, 5) and parallel to vector `4hat"i" - hat"j" + 3hat"k" and hat"i" + hat"j" + hat"k"`.
Find the cartesian equation of the plane `bar"r" = (5hat"i" - 2hat"j" - 3hat"k") + lambda(hat"i" + hat"j" + hat"k") + mu(hat"i" - 2hat"j" + 3hat"k")`.
Find the vector equation of the plane which makes intercepts 1, 1, 1 on the co-ordinates axes.
Find the vector equation of the line which passes through the point (3, 2, 1) and is parallel to the vector `2hat"i" + 2hat"j" - 3hat"k"`.
Find the Cartesian equations of the line which passes through the point (–2, 4, –5) and parallel to the line `(x + 2)/(3) = (y - 3)/(5) = (z + 5)/(6)`.
Find the vector equation of the line which passes through the origin and the point (5, –2, 3).
Find the Cartesian equations of the line passing through the point A(1, 1, 2) and perpendicular to the vectors `barb = hati + 2hatj + hatk and barc = 3hati + 2hatj - hatk`.
Find the Cartesian equations of the line which passes through the point (2, 1, 3) and perpendicular to the lines `(x - 1)/(1) = (y - 2)/(2) = (z - 3)/(3) and x/(-3) = y/(2) = z/(5)`.
Find the vector equation of the line which passes through the origin and intersect the line x – 1 = y – 2 = z – 3 at right angle.
Find the vector equation of the plane passing through the points A(1, -2, 1), B(2, -1, -3) and C(0, 1, 5).
Solve the following :
Find the vector equation of the plane passing through the point A(– 2, 3, 5) and parallel to the vectors `4hat"i" + 3hat"k" and hat"i" + hat"j"`.
Solve the following :
Find the vector equation of the plane passing through the origin and containing the line `bar"r" = (hat"i" + 4hat"j" + hat"k") + lambda(hat"i" + 2hat"j" + hat"k")`.
Solve the following :
Show that the lines x = y, z = 0 and x + y = 0, z = 0 intersect each other. Find the vector equation of the plane determined by them.
Find the Cartesian equations of the line passing through A(3, 2, 1) and B(1, 3, 1).
Verify if the point having position vector `4hat"i" - 11hat"j" + 2hat"k"` lies on the line `bar"r" = (6hat"i" - 4hat"j" + 5hat"k") + lambda (2hat"i" + 7hat"j" + 3hat"k")`
Find the direction ratios of the line perpendicular to the lines
`(x - 7)/2 = (y + 7)/(-3) = (z - 6)/1` and `(x + 5)/1 = (y + 3)/2 = (z - 6)/(-2)`
Reduce the equation `bar"r"*(3hat"i" + 4hat"j" + 12hat"k")` = 8 to normal form
Find Cartesian equation of the line passing through the point A(2, 1, −3) and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `hat"i" + 2hat"j" - hat"k"`
Find the vector equation of the line passing through the point having position vector `-hat"i"- hat"j" + 2hat"k"` and parallel to the line `bar"r" = (hat"i" + 2hat"j" + 3hat"k") + mu(3hat"i" + 2hat"j" + hat"k")`, µ is a parameter
Find the Cartesian equation of the plane passing through A(7, 8, 6)and parallel to XY plane
Find the Cartesian equation of the plane passing through the points A(1, 1, 2), B(0, 2, 3) C(4, 5, 6)
Find the Cartesian and vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k"` and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `2hat"i" - hat"j" + hat"k"`
Find the Cartesian and vector equation of the plane which makes intercepts 1, 1, 1 on the coordinate axes
The vector equation of the line passing through `4hati - hatj + 2hatk` and parallel to `-2hati - hatj + hatk` is ______
If the line passes through the points P(6, -1, 2), Q(8, -7, 2λ) and R(5, 2, 4) then value of λ is ______.
Equation of Z-axis is ______
What is the Cartesian product of A= {l, 2} and B= {a, b}?
If the line `(x - 1)/2 = (y + 1)/3 = z/4` lies in the plane 4x + 4y – kz = 0, then the value of k is ______.