English

Reduce the equation r¯⋅(3i^+4j^+12k^) = 8 to normal form - Mathematics and Statistics

Advertisements
Advertisements

Question

Reduce the equation `bar"r"*(3hat"i" + 4hat"j" + 12hat"k")` = 8 to normal form

Sum

Solution

Equation of plane is `bar"r"*(3hat"i" + 4hat"j" + 12hat"k")` = 8

This is of the form,

`bar"r"*bar"n"` = 8, where `bar"n" = 3hat"i" + 4hat"j" + 12hat"k"`

Now, `|bar"n"| = sqrt(3^2 + 4^2 + 12^2)`

= `sqrt(9 + 16 + 144)`

= 13

The equation `bar"r"*bar"n"` = 8 can be written as

`bar"r"* (bar"n")/|bar"n"| = 8/|bar"n"|`

i.e., `bar"r"*(3/13hat"i" + 4/13hat"j" + 12/13hat"k") = 8/13`,

which is the normal form of the plane.

shaalaa.com
Vector and Cartesian Equations of a Line
  Is there an error in this question or solution?
Chapter 1.6: Line and Plane - Short Answers I

RELATED QUESTIONS

Find the vector equation of the line passing through points having position vector `3hati + 4hatj - 7hatk and 6hati - hatj + hatk`.


Find the vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k"  "and perpendicular to vectors"  hat"i" + hat"j" + hat"k" and 2hat"i" - hat"j" + hat"k"`.


Find the Cartesian equations of the line passing through A(2, 2, 1) and B(1, 3, 0).


A(– 2, 3, 4), B(1, 1, 2) and C(4, –1, 0) are three points. Find the Cartesian equations of the line AB and show that points A, B, C are collinear.


Show that the lines given by `(x + 1)/(-10) = (y + 3)/(-1) = (z - 4)/(1) and (x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/(4)` intersect. Also, find the coordinates of their point of intersection.


Find the Cartesian equation of the plane passing through A( -1, 2, 3), the direction ratios of whose normal are 0, 2, 5.


Find the Cartesian equation of the plane passing through A(7, 8, 6) and parallel to the XY plane.


The foot of the perpendicular drawn from the origin to a plane is M(1,0,0). Find the vector equation of the plane.


Find the vector equation of the plane passing through the point A(– 2, 7, 5) and parallel to vector `4hat"i" - hat"j" + 3hat"k" and hat"i" + hat"j" + hat"k"`.


Find the cartesian equation of the plane `bar"r" = (5hat"i" - 2hat"j" - 3hat"k") + lambda(hat"i" + hat"j" + hat"k") + mu(hat"i" - 2hat"j" + 3hat"k")`.


Find the Cartesian equations of the line which passes through points (3, –2, –5) and (3, –2, 6).


Find the Cartesian equations of the line passing through the point A(1, 1, 2) and perpendicular to the vectors `barb = hati + 2hatj + hatk and barc = 3hati + 2hatj - hatk`.


If the lines `(x - 1)/(2) = (y + 1)/(3) = (z -1)/(4) and (x- 2)/(1) = (y +m)/(2) = (z - 2)/(1)` intersect each other, find m.


Find the Cartesian equation of the line passing through the origin which is perpendicular to x – 1 = y – 2 = z – 1 and intersect the line `(x - 1)/(2) = (y + 1)/(3) = (z - 1)/(4)`.


Find the coordinates of points on th line `(x - 1)/(1) =  (y - 2)/(-2) = (z - 3)/(2)` which are at the distance 3 unit from the base point A(l, 2, 3).


Solve the following :

Find the vector equation of the plane which is at a distance of 5 units from the origin and which is normal to the vector `2hat"i" + hat"j" + 2hat"k"`.


Find the vector equation of the plane passing through the points A(1, -2, 1), B(2, -1, -3) and C(0, 1, 5).


Solve the following :

Find the cartesian equation of the plane passing through A(1,-2, 3) and direction ratios of whose normal are 0, 2, 0.


Solve the following :

The foot of the perpendicular drawn from the origin to a plane is M(1, 2, 0). Find the vector equation of the plane.


Solve the following :

Find the cartesian equation of the plane `bar"r" = lambda(hat"i" + hat"j" - hat"k") + mu(hat"i" + 2hat"j" + 3hat"k")`.


Solve the following :

Find the cartesian equations of the planes which pass through A(1, 2, 3), B(3, 2, 1) and make equal intercepts on the coordinate axes.


Verify if the point having position vector `4hat"i" - 11hat"j" + 2hat"k"` lies on the line `bar"r" = (6hat"i" - 4hat"j" + 5hat"k") + lambda (2hat"i" + 7hat"j" + 3hat"k")`


Find the Cartesian equation of the line passing through A(1, 2, 3) and B(2, 3, 4)


Find Cartesian equation of the line passing through the point A(2, 1, −3) and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `hat"i" + 2hat"j" - hat"k"`


Find the Cartesian equation of the plane passing through A(7, 8, 6)and parallel to XY plane


Find the Cartesian equation of the plane passing through the points A(1, 1, 2), B(0, 2, 3) C(4, 5, 6)


Find the Cartesian and vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k"` and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `2hat"i" - hat"j" + hat"k"`


Find the Cartesian and vector equation of the plane which makes intercepts 1, 1, 1 on the coordinate axes


The cartesian coordinates of the point on the parabola y2 = x whose parameter is ____________.


The vector equation of the line passing through `4hati - hatj + 2hatk` and parallel to `-2hati - hatj + hatk` is ______ 


The cartesian equation of the line `overliner = (hati + hatj + hatk) + lambda(hatj + hatk)` is ______


Equation of Z-axis is ______


The shortest distance between A (1, 0, 2) and the line `(x + 1)/3 = (y - 2)/(-2) = (z + 1)/(-1)` is given by line joining A and B, then B in the line is ______ 


The lines x = ay + b, z = cy + d and x = a'y + b', z = c'y + d' are perpendicular to each other, if ______


The equation of line is `(x - 1)/2 = (y + 1)/(-2) = (z + 1)/1`. The co-ordinates of the point on the line at a distance of 3 units from the point (1, -1, -1) is ______ 


The centres of the circles x2 + y2 = 1, x2 + y2 + 6x – 2y = 1 and x2 + y2 – 12x + 4y = 1 are ______.


Find the vector equation of the line passing through the points A(2, 3, –1) and B(5, 1, 2).


If the line `(x - 1)/2 = (y + 1)/3 = z/4` lies in the plane 4x + 4y – kz = 0, then the value of k is ______.


Find the direction cosines of the line `(2x - 1)/3 = 3y = (4z + 3)/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×