English

Find the Cartesian equations of the line which passes through points (3, –2, –5) and (3, –2, 6). - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the Cartesian equations of the line which passes through points (3, –2, –5) and (3, –2, 6).

Sum

Solution

Let A = (3, –2, –5) and (3, –2, 6)
The direction ratios of the line AB are
3 – 3, – 2 – (– 2), 6 – (– 5) i.e. 0, 0, 11.
The parametric equations of the line passing through (x1, y1, z1) and having direction ratios a, b, c are
x = `x_1 + alambda, y = y_1  blambda, z = z_1 + clambda`
∴ The parametric equations of the line passing through (3, –2, –5) and having direction ratios are 0, 0, 11 are
x = `3 + (0)lambda, y = -2 + 0(lambda), z = -5 + 11lambda`
i.e. x = 3, y = –2, z = 11λ – 5
∴ the cartesian equations of the line are
x = 3, y = –2, z = 11λ – 5, λ is a scalar.

shaalaa.com
Vector and Cartesian Equations of a Line
  Is there an error in this question or solution?
Chapter 6: Line and Plane - Miscellaneous Exercise 6 A [Page 208]

APPEARS IN

RELATED QUESTIONS

Find the vector equation of line passing through the point having position vector `5hat"i" + 4hat"j" + 3hat"k"` and having direction ratios  –3, 4, 2.


Find the vector equation of the line passing through the point having position vector `-hat"i" - hat"j" + 2hat"k"  "and parallel to the line" bar"r" = (hat"i" + 2hat"j" + 3hat"k") + λ(3hat"i" + 2hat"j" + hat"k").`


Show that the lines given by `(x + 1)/(-10) = (y + 3)/(-1) = (z - 4)/(1) and (x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/(4)` intersect. Also, find the coordinates of their point of intersection.


A line passes through (3, –1, 2) and is perpendicular to lines `bar"r" = (hat"i" + hat"j" - hat"k") + lambda(2hat"i" - 2hat"j" + hat"k") and bar"r" = (2hat"i" + hat"j" - 3hat"k") + mu(hat"i" - 2hat"j" + 2hat"k")`. Find its equation.


Find the Cartesian equation of the plane passing through A( -1, 2, 3), the direction ratios of whose normal are 0, 2, 5.


Find the cartesian equation of the plane `bar"r" = (5hat"i" - 2hat"j" - 3hat"k") + lambda(hat"i" + hat"j" + hat"k") + mu(hat"i" - 2hat"j" + 3hat"k")`.


Find the vector equation of the line passing through the point having position vector `3hat"i" + 4hat"j" - 7hat"k"` and parallel to `6hat"i" - hat"j" + hat"k"`.


Find the vector equation of the line which passes through the point (3, 2, 1) and is parallel to the vector `2hat"i" + 2hat"j" - 3hat"k"`.


Find the Cartesian equations of the line which passes through the point (–2, 4, –5) and parallel to the line `(x + 2)/(3) = (y - 3)/(5) = (z + 5)/(6)`.


Obtain the vector equation of the line `(x + 5)/(3) = (y + 4)/(5)= (z + 5)/(6)`.


Choose correct alternatives :

The vector equation of line 2x – 1 = 3y + 2 = z – 2 is ______.


Find the vector equation of the plane passing through the points A(1, -2, 1), B(2, -1, -3) and C(0, 1, 5).


Solve the following :

Find the vector equation of the plane passing through the point A(– 2, 3, 5) and parallel to the vectors `4hat"i" + 3hat"k" and hat"i" + hat"j"`.


Solve the following :

Find the cartesian equation of the plane `bar"r" = lambda(hat"i" + hat"j" - hat"k") + mu(hat"i" + 2hat"j" + 3hat"k")`.


Solve the following :

Find the cartesian equations of the planes which pass through A(1, 2, 3), B(3, 2, 1) and make equal intercepts on the coordinate axes.


Solve the following :

Find the vector equation of the plane which makes equal non zero intercepts on the coordinate axes and passes through (1, 1, 1).


Find the Cartesian equation of the line passing through  A(1, 2, 3) and having direction ratios 2, 3, 7


Find the vector equation of the line passing through the point having position vector `4hat i - hat j + 2hat"k"` and parallel to the vector `-2hat i - hat j + hat k`.


Find the direction ratios of the line perpendicular to the lines

`(x - 7)/2 = (y + 7)/(-3) = (z - 6)/1` and `(x + 5)/1 = (y + 3)/2 = (z - 6)/(-2)`


Reduce the equation `bar"r"*(3hat"i" + 4hat"j" + 12hat"k")` = 8 to normal form


Find the Cartesian equation of the line passing through A(1, 2, 3) and B(2, 3, 4)


Find Cartesian equation of the line passing through the point A(2, 1, −3) and perpendicular to vectors `hat"i" + hat"j" + hat"k"` and `hat"i" + 2hat"j" - hat"k"`


Find m, if the lines `(1 - x)/3 =(7y - 14)/(2"m") = (z - 3)/2` and `(7 - 7x)/(3"m") = (y - 5)/1 = (6 - z)/5` are at right angles


Find the Cartesian and vector equation of the plane which makes intercepts 1, 1, 1 on the coordinate axes


The point P lies on line A, B where A = (2, 4, 5} and B = (1, 2, 3). If z co-ordinate of point P is 3, the its y co-ordinate is ______.


Equation of Z-axis is ______


The shortest distance between A (1, 0, 2) and the line `(x + 1)/3 = (y - 2)/(-2) = (z + 1)/(-1)` is given by line joining A and B, then B in the line is ______ 


A line passes through the point of intersection of the lines 3x + y + 1 = 0 and 2x – y + 3 = 0 and makes equal intercepts with axes. The equation of the line is ______.


The centres of the circles x2 + y2 = 1, x2 + y2 + 6x – 2y = 1 and x2 + y2 – 12x + 4y = 1 are ______.


Find the Cartesian equation of the plane passing through A(–1, 2, 3), the direction ratios of whose normal are 0, 2, 5.


Find the vector equation of the line passing through the points A(2, 3, –1) and B(5, 1, 2).


Find the vector equation of a line passing through the point `hati + 2hatj + 3hatk` and perpendicular to the vectors `hati + hatj + hatk` and `2hati - hatj + hatk`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×