English

Solve the following : Find the cartesian equation of the plane rijkijkr¯=λ(i^+j^-k^)+μ(i^+2j^+3k^). - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following :

Find the cartesian equation of the plane `bar"r" = lambda(hat"i" + hat"j" - hat"k") + mu(hat"i" + 2hat"j" + 3hat"k")`.

Sum

Solution

The equation `bar"r" = bar"a" + lambdabar"b" + mubar"c"` represents a plane passing through a point having position vector `bar"a"` and parallel to vectors `bar"b" and bar"c"`.
Here,

`bar"a"=0hat"i"+0hat"j"+0hat"k"`
`bar"b" = hat"i" + hat"j" - hat"k"`,
`bar"c" = hat"i" + 2hat"j" + 3hat"k"`

∴ `bar"b" xx bar"c" = |(hat"i",hat"j" ,hat"k"),(1, 1, -1),(1, 2, 3)|`

= `(3 + 2)hat"i" - (3 - 1)hat"j" + (2 - 1)hat"k"`
= `5hat"i" - 4hat"j" + hat"k"`
Also,
`bar"a".(bar"b" xx bar"c")`
= `(0hat"i"+0hat"j"+0hat"k").(5hat"i"-4hat"j"+hat"k")`
= 0
The vector equation of the plane passing through A`(bara)` and parallel to `bar"b" and bar"c"` is

`bar"r".(bar"b" xx bar"c") = bar"a".(bar"b" xx bar"c")`

∴ the vector equation of the given plane is

`bar"r".(5hat"i" - 4hat"j" + hat"k")` = 0

If `bar"r" = xhat"i" + yhat"j" + zhat"k"`, then this equation becomes

`(xhat"i" + yhat"j" + zhat"k").(5hat"i" - 4hat"j" + hat"k")` = 0

∴ 5x – 4y + z = 0.
This is the cartesian equation of the required plane.

shaalaa.com
Vector and Cartesian Equations of a Line
  Is there an error in this question or solution?
Chapter 6: Line and Plane - Miscellaneous Exercise 6 B [Page 226]

APPEARS IN

RELATED QUESTIONS

Find the vector equation of the line passing through the point having position vector `-2hat"i" + hat"j" + hat"k"  "and parallel to vector"  4hat"i" - hat"j" + 2hat"k"`.


Find the vector equation of line passing through the point having position vector `5hat"i" + 4hat"j" + 3hat"k"` and having direction ratios  –3, 4, 2.


Find the Cartesian equations of the line passing through A(2, 2, 1) and B(1, 3, 0).


The foot of the perpendicular drawn from the origin to a plane is M(1,0,0). Find the vector equation of the plane.


Find the vector equation of the plane passing through the point A(– 2, 7, 5) and parallel to vector `4hat"i" - hat"j" + 3hat"k" and hat"i" + hat"j" + hat"k"`.


Find the cartesian equation of the plane `bar"r" = (5hat"i" - 2hat"j" - 3hat"k") + lambda(hat"i" + hat"j" + hat"k") + mu(hat"i" - 2hat"j" + 3hat"k")`.


Find the vector equation of the plane which makes intercepts 1, 1, 1 on the co-ordinates axes.


Find the vector equation of the line which passes through the point (3, 2, 1) and is parallel to the vector `2hat"i" + 2hat"j" - 3hat"k"`.


Find the Cartesian equations of the line which passes through the point (–2, 4, –5) and parallel to the line `(x + 2)/(3) = (y - 3)/(5) = (z + 5)/(6)`.


Obtain the vector equation of the line `(x + 5)/(3) = (y + 4)/(5)= (z + 5)/(6)`.


Find the vector equation of the line which passes through the origin and intersect the line x – 1 = y – 2 = z – 3 at right angle.


Find the vector and Cartesian equations of the line passing through the point (–1, –1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z − 2.


Find the Cartesian equation of the line passing through the origin which is perpendicular to x – 1 = y – 2 = z – 1 and intersect the line `(x - 1)/(2) = (y + 1)/(3) = (z - 1)/(4)`.


Find the vector equation of the line whose Cartesian equations are y = 2 and 4x – 3z + 5 = 0.


Find the coordinates of points on th line `(x - 1)/(1) =  (y - 2)/(-2) = (z - 3)/(2)` which are at the distance 3 unit from the base point A(l, 2, 3).


Find the vector equation of the plane passing through the points A(1, -2, 1), B(2, -1, -3) and C(0, 1, 5).


Solve the following :

Find the cartesian equation of the plane passing through A(1,-2, 3) and direction ratios of whose normal are 0, 2, 0.


Solve the following :

The foot of the perpendicular drawn from the origin to a plane is M(1, 2, 0). Find the vector equation of the plane.


Solve the following :

Find the vector equation of the plane passing through the point A(– 2, 3, 5) and parallel to the vectors `4hat"i" + 3hat"k" and hat"i" + hat"j"`.


Find the Cartesian equations of the line passing through A(3, 2, 1) and B(1, 3, 1).


Find the cartesian equation of the plane passing through A(1, 2, 3) and the direction ratios of whose normal are 3, 2, 5.


Find the vector equation of the line `x/1 = (y - 1)/2 = (z - 2)/3`


Verify if the point having position vector `4hat"i" - 11hat"j" + 2hat"k"` lies on the line `bar"r" = (6hat"i" - 4hat"j" + 5hat"k") + lambda (2hat"i" + 7hat"j" + 3hat"k")`


Find the Cartesian equation of the line passing through (−1, −1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z – 2


The point P lies on line A, B where A = (2, 4, 5} and B = (1, 2, 3). If z co-ordinate of point P is 3, the its y co-ordinate is ______.


The vector equation of the line passing through `4hati - hatj + 2hatk` and parallel to `-2hati - hatj + hatk` is ______ 


The cartesian equation of the line `overliner = (hati + hatj + hatk) + lambda(hatj + hatk)` is ______


If the line passes through the points P(6, -1, 2), Q(8, -7, 2λ) and R(5, 2, 4) then value of λ is ______.


The shortest distance between A (1, 0, 2) and the line `(x + 1)/3 = (y - 2)/(-2) = (z + 1)/(-1)` is given by line joining A and B, then B in the line is ______ 


The equation of line is `(x - 1)/2 = (y + 1)/(-2) = (z + 1)/1`. The co-ordinates of the point on the line at a distance of 3 units from the point (1, -1, -1) is ______ 


The equation of line equally inclined to co-ordinate axes and passing through (–3, 2, –5) is ______.


A line passes through the point of intersection of the lines 3x + y + 1 = 0 and 2x – y + 3 = 0 and makes equal intercepts with axes. The equation of the line is ______.


What is the Cartesian product of A= {l, 2} and B= {a, b}?


Find the Cartesian equation of the plane passing through A(–1, 2, 3), the direction ratios of whose normal are 0, 2, 5.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×