Advertisements
Online Mock Tests
Chapters
Advertisements
Solutions for Chapter 6: Line and Plane
Below listed, you can find solutions for Chapter 6 of Maharashtra State Board Balbharati for Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board.
Balbharati solutions for Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board 6 Line and Plane Exercise 6.1 [Pages 200 - 201]
Find the vector equation of the line passing through the point having position vector `-2hat"i" + hat"j" + hat"k" "and parallel to vector" 4hat"i" - hat"j" + 2hat"k"`.
Find the vector equation of the line passing through points having position vector `3hati + 4hatj - 7hatk and 6hati - hatj + hatk`.
Find the vector equation of line passing through the point having position vector `5hat"i" + 4hat"j" + 3hat"k"` and having direction ratios –3, 4, 2.
Find the vector equation of the line passing through the point having position vector `hat"i" + 2hat"j" + 3hat"k" "and perpendicular to vectors" hat"i" + hat"j" + hat"k" and 2hat"i" - hat"j" + hat"k"`.
Find the vector equation of the line passing through the point having position vector `-hat"i" - hat"j" + 2hat"k" "and parallel to the line" bar"r" = (hat"i" + 2hat"j" + 3hat"k") + λ(3hat"i" + 2hat"j" + hat"k").`
Find the cartesian equations of the line passing through A(–1, 2, 1) and having direction ratios 2, 3, 1.
Find the Cartesian equations of the line passing through A(2, 2, 1) and B(1, 3, 0).
A(– 2, 3, 4), B(1, 1, 2) and C(4, –1, 0) are three points. Find the Cartesian equations of the line AB and show that points A, B, C are collinear.
Show that the lines given by `(x + 1)/(-10) = (y + 3)/(-1) = (z - 4)/(1) and (x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/(4)` intersect. Also, find the coordinates of their point of intersection.
A line passes through (3, –1, 2) and is perpendicular to lines `bar"r" = (hat"i" + hat"j" - hat"k") + lambda(2hat"i" - 2hat"j" + hat"k") and bar"r" = (2hat"i" + hat"j" - 3hat"k") + mu(hat"i" - 2hat"j" + 2hat"k")`. Find its equation.
Show that the line `(x - 2)/(1) = (y - 4)/(2) = (z + 4)/(-2)` passes through the origin.
Balbharati solutions for Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board 6 Line and Plane Exercise 6.2 [Page 207]
Find the length of the perpendicular (2, –3, 1) to the line `(x + 1)/(2) = (y - 3)/(3) = (z + 1)/(-1)`.
Find the co-ordinates of the foot of the perpendicular drawn from the point `2hati - hatj + 5hatk` to the line `barr = (11hati - 2hatj - 8hatk) + λ(10hati - 4hatj - 11hatk).` Also find the length of the perpendicular.
Find the shortest distance between the lines `barr = (4hati - hatj) + λ(hati + 2hatj - 3hatk)` and `barr = (hati - hatj + 2hatk) + μ(hati + 4hatj - 5hatk)`
Find the shortest distance between the lines `(x + 1)/(7) = (y + 1)/(-6) = (z + 1)/(1) and (x - 3)/(1) = (y - 5)/(-2) = (z - 7)/(1)`
Find the perpendicular distance of the point (1, 0, 0) from the line `(x - 1)/(2) = (y + 1)/(-3) = (z + 10)/(8)` Also find the co-ordinates of the foot of the perpendicular.
A(1, 0, 4), B(0, -11, 13), C(2, -3, 1) are three points and D is the foot of the perpendicular from A to BC. Find the co-ordinates of D.
By computing the shortest distance, determine whether following lines intersect each other.
`bar"r" = (hat"i" - hat"j") + lambda(2hat"i" + hat"k") and bar"r" = (2hat"i" - hat"j") + mu(hat"i" + hat"j" - hat"k")`
By computing the shortest distance, determine whether following lines intersect each other.
`(x - 5)/(4) = (y -7)/(-5) = (z + 3)/(-5) and (x - 8)/(7) = (y - 7)/(1) = (z - 5)/(3)`
If the lines `(x - 1)/2 = (y + 1)/3 = (z - 1)/4 and (x - 3)/1 = (y - k)/2 = z/1` intersect each other, then find k.
Balbharati solutions for Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board 6 Line and Plane Exercise 6.3 [Page 216]
Find the vector equation of a plane which is at 42 unit distance from the origin and which is normal to the vector `2hati + hatj - 2hatk`.
Find the perpendicular distance of the origin from the plane 6x – 2y + 3z – 7 = 0.
Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x + 6y – 3z = 63.
Reduce the equation `bar"r".(3hat"i" + 4hat"j" + 12hat"k")` to normal form and hence find
(i) the length of the perpendicular from the origin to the plane
(ii) direction cosines of the normal.
Find the vector equation of the plane passing through the point having position vector `hati + hatj + hatk` and perpendicular to the vector `4hati + 5hatj + 6hatk`.
Find the Cartesian equation of the plane passing through A( -1, 2, 3), the direction ratios of whose normal are 0, 2, 5.
Find the Cartesian equation of the plane passing through A(7, 8, 6) and parallel to the XY plane.
The foot of the perpendicular drawn from the origin to a plane is M(1,0,0). Find the vector equation of the plane.
Find the vector equation of the plane passing through the point A(– 2, 7, 5) and parallel to vector `4hat"i" - hat"j" + 3hat"k" and hat"i" + hat"j" + hat"k"`.
Find the cartesian equation of the plane `bar"r" = (5hat"i" - 2hat"j" - 3hat"k") + lambda(hat"i" + hat"j" + hat"k") + mu(hat"i" - 2hat"j" + 3hat"k")`.
Find the vector equation of the plane which makes intercepts 1, 1, 1 on the co-ordinates axes.
Balbharati solutions for Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board 6 Line and Plane Exercise 6.4 [Page 220]
Find the angle between planes `bar"r".(hat"i" + hat"j" + 2hat"k") = 13 and bar"r"(2hat"i" + hat"j" + hat"k")` = 31.
Find the acute angle between the line `barr = (hati + 2hatj + 2hatk) + lambda(2hati + 3hatj - 6hatk)` and the plane `barr*(2hati - hatj + hatk)` = 0
Show that the line `bar"r" = (2hat"j" - 3hat"k") + lambda(hat"i" + 2hat"j" + 3hat"k") and bar"r" = (2hat"i" + 6hat"j" + 3hat"k") + mu(2hat"i" + 3hat"j" + 4hat"k")` are coplanar. Find the equation of the plane determined by them.
Find the distance of the point `4hat"i" - 3hat"j" + hat"k"` from the plane `bar"r".(2hat"i" + 3hat"j" - 6hat"k")` = 21.
Find the distance of the point (1, 1 –1) from the plane 3x +4y – 12z + 20 = 0.
Balbharati solutions for Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board 6 Line and Plane Miscellaneous Exercise 6 A [Pages 207 - 209]
Find the vector equation of the line passing through the point having position vector `3hat"i" + 4hat"j" - 7hat"k"` and parallel to `6hat"i" - hat"j" + hat"k"`.
Find the vector equation of the line which passes through the point (3, 2, 1) and is parallel to the vector `2hat"i" + 2hat"j" - 3hat"k"`.
Find the Cartesian equations of the line which passes through the point (–2, 4, –5) and parallel to the line `(x + 2)/(3) = (y - 3)/(5) = (z + 5)/(6)`.
Obtain the vector equation of the line `(x + 5)/(3) = (y + 4)/(5)= (z + 5)/(6)`.
Find the vector equation of the line which passes through the origin and the point (5, –2, 3).
Find the Cartesian equations of the line which passes through points (3, –2, –5) and (3, –2, 6).
Find the Cartesian equations of the line passing through A(3, 2, 1) and B(1, 3, 1).
Find the Cartesian equations of the line passing through the point A(1, 1, 2) and perpendicular to the vectors `barb = hati + 2hatj + hatk and barc = 3hati + 2hatj - hatk`.
Find the Cartesian equations of the line which passes through the point (2, 1, 3) and perpendicular to the lines `(x - 1)/(1) = (y - 2)/(2) = (z - 3)/(3) and x/(-3) = y/(2) = z/(5)`.
Find the vector equation of the line which passes through the origin and intersect the line x – 1 = y – 2 = z – 3 at right angle.
Find the value of λ so that the lines `(1 - x)/(3) = (7y - 14)/(λ) = (z - 3)/(2) and (7 - 7x)/(3λ) = (y - 5)/(1) = (6 - z)/(5)` are at right angles.
Find the acute angle between the lines `(x - 1)/(1) = (y - 2)/(-1) = (z - 3)/(2) and (x - 1)/(2) = (y - 2)/(1) = (z - 3)/(1)`.
Find the acute angle between the lines x = y, z = 0 and x = 0, z = 0.
Find the acute angle between the lines x = –y, z = 0 and x = 0, z = 0.
Find the co-ordinates of the foot of the perpendicular drawn from the point (0, 2, 3) to the line `(x + 3)/(5) = (y - 1)/(2) = (z + 4)/(3)`.
By computing the shortest distance determine whether following lines intersect each other : `bar"r" = (hat"i" + hat"j" - hat"k") + lambda(2hat"i" - hat"j" + hat"k") and bar"r" (2hat"i" + 2hat"j" - 3hat"k") + mu(hat"i" + hat"j" - 2hat"k")`
By computing the shortest distance determine whether the following lines intersect each other: `(x -5)/(4) = (y - 7)/(5) = (z + 3)/(5)` and x – 6 = y – 8 = z + 2.
If the lines `(x - 1)/(2) = (y + 1)/(3) = (z -1)/(4) and (x- 2)/(1) = (y +m)/(2) = (z - 2)/(1)` intersect each other, find m.
Find the vector and Cartesian equations of the line passing through the point (–1, –1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z − 2.
Find the direction cosines of the lines `bar"r" = (-2hat"i" + 5/2hat"j" - hat"k") + lambda(2hat"i" + 3hat"j")`.
Find the Cartesian equation of the line passing through the origin which is perpendicular to x – 1 = y – 2 = z – 1 and intersect the line `(x - 1)/(2) = (y + 1)/(3) = (z - 1)/(4)`.
Find the vector equation of the line whose Cartesian equations are y = 2 and 4x – 3z + 5 = 0.
Find the coordinates of points on th line `(x - 1)/(1) = (y - 2)/(-2) = (z - 3)/(2)` which are at the distance 3 unit from the base point A(l, 2, 3).
Balbharati solutions for Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board 6 Line and Plane Miscellaneous Exercise 6 B [Pages 223 - 225]
Choose correct alternatives :
If the line `x/(3) = y/(4)` = z is perpendicular to the line `(x - 1)/k = (y + 2)/(3) = (z - 3)/(k - 1)`, then the value of k is
`(11)/(4)`
`-(11)/(4)`
`(11)/(2)`
`(4)/(11)`
Choose correct alternatives :
The vector equation of line 2x – 1 = 3y + 2 = z – 2 is ______.
`barr = (1/2hati - 2/3hatj + 2hatk) + lambda(3hati + 2hatj + 6hatk)`
`barr = hati - hatj + (2hati + hatj + hatk)`
`barr = (1/2hati - hatj) + lambda(hati - 2hatj + 6hatk)`
`barr = (hati + hatj) + lambda(hati - 2hatj + 6hatk)`
The direction ratios of the line which is perpendicular to the two lines `(x - 7)/(2) = (y + 17)/(-3) = (z - 6)/(1) and (x + 5)/(1) = (y + 3)/(2) = (z - 4)/(-2)` are ______.
4, 5, 7
4, –5, 7
4, –5, –7
–4, 5, 8
Choose correct alternatives :
The length of the perpendicular from (1, 6,3) to the line `x/(1) = (y - 1)/(2) =(z - 2)/(3)`
3
`sqrt11)`
`sqrt(13)`
5
Choose correct alternatives :
The shortest distance between the lines `vecr = (hati + 2hatj + hatk) + lambda(hati - hatj + hatk) and vecr = (2hati - hatj - hatk) + μ(2hati + hatj + 2hatk)` is ______.
`(1)/sqrt(3)`
`(1)/sqrt(2)`
`(3)/sqrt(2)`
`sqrt(3)/(2)`
The lines `(x - 2)/(1) = (y - 3)/(1) = (z - 4)/(-k) and (x - 1)/k = (y - 4)/(2) = (z - 5)/(1)` are coplnar if ______.
k = 1 or –1
k = 0 or – 3
k = ± 3
k = 0 or – 1
Choose correct alternatives :
The lines `x/(1) = y/(2) = z/(3) and (x - 1)/(-2) = (y - 2)/(-4) = (z - 3)/(6)` are
perpendicular
intersecting
skew
coincident
Choose correct alternatives :
Equation of X-axis is ______.
x = y = z
y = z
y = 0, z = 0
x = 0, y = 0
Choose correct alternatives :
The angle between the lines 2x = 3y = – z and 6x = – y = – 4z is
45°
30°
0°
90°
The direction ratios of the line 3x + 1 = 6y – 2 = 1 – z are ______.
2, 1, 6
2, 1, – 6
2, – 1, 6
– 2, 1, 6
The perpendicular distance of the plane 2x + 3y – z = k from the origin is `sqrt(14)` units, the value of k is ______.
14
196
`2sqrt(14)`
`sqrt(14)/(2)`
Choose correct alternatives :
The angle between the planes `bar"r".(hat"i" - 2hat"j" + 3hat"k") + 4 = 0 and bar"r".(2hat"i" + hat"j" - 3hat"k") + 7 = 0` is
`pi/(2)`
`pi/(3)`
`cos^-1(3/4)`
`cos^-1(9/14)`
Choose correct alternatives :
If the planes `bar"r".(2hat"i" - lambdahat"j" + hat"k") = 3 and bar"r".(4hat"i" - hat"j" + muhat"k") = 5` are parallel, then the values of λ and μ are respectively
`(1)/(2), -2`
`-(1)/(2), 2`
`-(1)/(2), -2`
`(1)/(2), 2`
Choose correct alternatives :
The equation of the plane passing through (2, -1, 3) and making equal intercepts on the coordinate axes is
x + y + z = 1
x + y + z = 2
x + y + z = 3
x + y + z = 4
Choose correct alternatives :
Measure of angle between the plane 5x – 2y + 3z – 7 = 0 and 15x – 6y + 9z + 5 = 0 is
0°
30°
45°
90°
Choose correct alternatives :
The direction cosines of the normal to the plane 2x – y + 2z = 3 are ______
`(2)/(3),(-1)/(3),(2)/(3)`
`(-2)/(3),(1)/(3),(-2)/(3)`
`(2)/(3),(1)/(3),(2)/(3)`
`(2)/(3),(-1)/(3),(-2)/(3)`
Choose correct alternatives :
The equation of the plane passing through the points (1, −1, 1), (3, 2, 4) and parallel to the Y-axis is ______
3x + 2z – 1 = 0
3x – 2z = 1
3x + 2z + 1 = 0
3x + 2z = 2
Choose correct alternatives :
The equation of the plane in which the line `(x - 5)/(4) = (y - 7)/(4) = (z + 3)/(-5) and (x - 8)/(7) = (y - 4)/(1) = (z - 5)/(3)` lie, is
17x – 47y – 24z + 172 = 0
17x + 47y – 24z + 172 = 0
17x + 47y + 24z + 172 = 0
17x – 47y + 24z + 172 = 0
Choose correct alternatives :
If the line `(x + 1)/(2) = (y - m)/(3) = (z - 4)/(6)` lies in the plane 3x – 14y + 6z + 49 = 0, then the value of m is
5
3
2
– 5
Choose correct alternatives :
The foot of perpendicular drawn from the point (0,0,0) to the plane is (4, -2, -5) then the equation of the plane is
4x + y + 5z = 14
4x – 2y – 5z = 45
x – 2y – 5z = 10
4x + y + 6z = 11
Balbharati solutions for Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board 6 Line and Plane Miscellaneous Exercise 6 B [Pages 225 - 226]
Solve the following :
Find the vector equation of the plane which is at a distance of 5 units from the origin and which is normal to the vector `2hat"i" + hat"j" + 2hat"k"`.
Solve the following :
Find the perpendicular distance of the origin from the plane 6x + 2y + 3z - 7 = 0
Solve the following :
Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x + 3y + 6z = 49.
Solve the following :
Reduce the equation `bar"r".(6hat"i" + 8hat"j" + 24hat"k")` = 13 normal form and hence find
(i) the length of the perpendicular from the origin to the plane.
(ii) direction cosines of the normal.
Find the vector equation of the plane passing through the points A(1, -2, 1), B(2, -1, -3) and C(0, 1, 5).
Solve the following :
Find the cartesian equation of the plane passing through A(1,-2, 3) and direction ratios of whose normal are 0, 2, 0.
Solve the following :
Find the cartesian equation of the plane passing through A(7, 8, 6) and parallel to the plane `bar"r".(6hat"i" + 8hat"j" + 7hat"k")` = 0.
Solve the following :
The foot of the perpendicular drawn from the origin to a plane is M(1, 2, 0). Find the vector equation of the plane.
Solve the following :
A plane makes non zero intercepts a, b, c on the coordinate axes. Show that the vector equation of the plane is `bar"r".(bchat"i" + cahat"j" + abhat"k")` = abc.
Solve the following :
Find the vector equation of the plane passing through the point A(– 2, 3, 5) and parallel to the vectors `4hat"i" + 3hat"k" and hat"i" + hat"j"`.
Solve the following :
Find the cartesian equation of the plane `bar"r" = lambda(hat"i" + hat"j" - hat"k") + mu(hat"i" + 2hat"j" + 3hat"k")`.
Solve the following :
Find the cartesian equations of the planes which pass through A(1, 2, 3), B(3, 2, 1) and make equal intercepts on the coordinate axes.
Solve the following :
Find the vector equation of the plane which makes equal non zero intercepts on the coordinate axes and passes through (1, 1, 1).
Solve the following :
Find the angle between the planes `bar"r".(-2hat"i" + hat"j" + 2hat"k")` = 17 and `bar"r".(2hat"i" + 2hat"j" + hat"k")` = 71.
Solve the following:
Find the acute angle between the line `bar"r" = lambda(hat"i" - hat"j" + hat"k")` and the plane `bar"r".(2hat"i" - hat"j" + hat"k")` = 23.
Show that the line `bar"r" = (2hat"j" - 3hat"k") + lambda(hat"i" + 2hat"j" + 3hat"k") and bar"r" = (2hat"i" + 6hat"j" + 3hat"k") + mu(2hat"i" + 3hat"j" + 4hat"k")` are coplanar. Find the equation of the plane determined by them.
Solve the following:
Find the distance of the point `3hat"i" + 3hat"j" + hat"k"` from the plane `bar"r".(2hat"i" + 3hat"j" + 6hat"k")` = 21.
Solve the following :
Find the distance of the point (13, 13, – 13) from the plane 3x + 4y – 12z = 0.
Solve the following :
Find the vector equation of the plane passing through the origin and containing the line `bar"r" = (hat"i" + 4hat"j" + hat"k") + lambda(hat"i" + 2hat"j" + hat"k")`.
Solve the following :
Find the vector equation of the plane which bisects the segment joining A(2, 3, 6) and B(4, 3, –2) at right angle.
Solve the following :
Show that the lines x = y, z = 0 and x + y = 0, z = 0 intersect each other. Find the vector equation of the plane determined by them.
Solutions for 6: Line and Plane
Balbharati solutions for Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board chapter 6 - Line and Plane
Shaalaa.com has the Maharashtra State Board Mathematics Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board Maharashtra State Board solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. Balbharati solutions for Mathematics Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board Maharashtra State Board 6 (Line and Plane) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. Balbharati textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board chapter 6 Line and Plane are Vector and Cartesian Equations of a Line, Angle Between Planes, Coplanarity of Two Lines, Distance of a Point from a Plane, Distance Between Skew Lines and Parallel Lines, Distance of a Point from a Line, Equation of a Plane.
Using Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board solutions Line and Plane exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in Balbharati Solutions are essential questions that can be asked in the final exam. Maximum Maharashtra State Board Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board students prefer Balbharati Textbook Solutions to score more in exams.
Get the free view of Chapter 6, Line and Plane Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board additional questions for Mathematics Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board Maharashtra State Board, and you can use Shaalaa.com to keep it handy for your exam preparation.