English

Find the Cartesian equations of the line which passes through the point (2, 1, 3) and perpendicular to the lines andx-11=y-22=z-33andx-3=y2=z5. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the Cartesian equations of the line which passes through the point (2, 1, 3) and perpendicular to the lines `(x - 1)/(1) = (y - 2)/(2) = (z - 3)/(3) and x/(-3) = y/(2) = z/(5)`.

Sum

Solution

Let line L1 be   `(x - 1)/(1) = (y - 2)/(2) = (z - 3)/(3)`

Let line L2 be  `x/(-3) = y/(2) = z/(5)`

It is perpendicular to the vector `bar"b" = hat"i" + 2hat"j" + hat"k" and bar"c" = -3hat"i" + 2hat"j" + 5hat"k"`.

∴ it is perpendicular to lines whose direction ratios are 1, 2, 1 and -3, 2, 5.

Now, `bar"b"xxbar"c"=|(hat"i",hat"j",hat"k"),(1,2,3),(-3,2,5)|`

`=hat"i"(10-6)-hat"j"(5+9)+hat"k"(2+6)`

`bar"b"xxbar"c"= 4hat"i"-14hat"j"+8hat"k"`

∴ Is parallel to the required line.

The direction ratios of the parallel line are 4, -14, 8 or 2, -7, 4 

Let the required line passing through point A = (2, 1, 3) = (x1 y1 z1)

∴  The cartesian equations of the line is 

`(x = x_1)/a = (y - y_1)/b = (z - z_1)/c`

 `(x - 2)/(2) = (y - 1)/(-7) = (z - 2)/(4)`

shaalaa.com
Vector and Cartesian Equations of a Line
  Is there an error in this question or solution?
Chapter 6: Line and Plane - Miscellaneous Exercise 6 A [Page 208]

APPEARS IN

RELATED QUESTIONS

Find the vector equation of the line passing through the point having position vector `-2hat"i" + hat"j" + hat"k"  "and parallel to vector"  4hat"i" - hat"j" + 2hat"k"`.


Find the cartesian equations of the line passing through A(–1, 2, 1) and having direction ratios 2, 3, 1.


A(– 2, 3, 4), B(1, 1, 2) and C(4, –1, 0) are three points. Find the Cartesian equations of the line AB and show that points A, B, C are collinear.


A line passes through (3, –1, 2) and is perpendicular to lines `bar"r" = (hat"i" + hat"j" - hat"k") + lambda(2hat"i" - 2hat"j" + hat"k") and bar"r" = (2hat"i" + hat"j" - 3hat"k") + mu(hat"i" - 2hat"j" + 2hat"k")`. Find its equation.


Show that the line `(x - 2)/(1) = (y - 4)/(2) = (z + 4)/(-2)` passes through the origin.


Find the Cartesian equation of the plane passing through A( -1, 2, 3), the direction ratios of whose normal are 0, 2, 5.


Find the Cartesian equations of the line which passes through points (3, –2, –5) and (3, –2, 6).


If the lines `(x - 1)/(2) = (y + 1)/(3) = (z -1)/(4) and (x- 2)/(1) = (y +m)/(2) = (z - 2)/(1)` intersect each other, find m.


Find the vector and Cartesian equations of the line passing through the point (–1, –1, 2) and parallel to the line 2x − 2 = 3y + 1 = 6z − 2.


Find the Cartesian equation of the line passing through the origin which is perpendicular to x – 1 = y – 2 = z – 1 and intersect the line `(x - 1)/(2) = (y + 1)/(3) = (z - 1)/(4)`.


Find the coordinates of points on th line `(x - 1)/(1) =  (y - 2)/(-2) = (z - 3)/(2)` which are at the distance 3 unit from the base point A(l, 2, 3).


Choose correct alternatives :

The vector equation of line 2x – 1 = 3y + 2 = z – 2 is ______.


Solve the following :

Find the vector equation of the plane which is at a distance of 5 units from the origin and which is normal to the vector `2hat"i" + hat"j" + 2hat"k"`.


Solve the following :

Find the cartesian equation of the plane passing through A(1,-2, 3) and direction ratios of whose normal are 0, 2, 0.


Solve the following :

Find the cartesian equations of the planes which pass through A(1, 2, 3), B(3, 2, 1) and make equal intercepts on the coordinate axes.


Solve the following :

Find the vector equation of the plane which makes equal non zero intercepts on the coordinate axes and passes through (1, 1, 1).


Find the Cartesian equations of the line passing through A(3, 2, 1) and B(1, 3, 1).


Find the vector equation of the line `x/1 = (y - 1)/2 = (z - 2)/3`


Find the Cartesian equation of the plane passing through the points (3, 2, 1) and (1, 3, 1)


Find the Cartesian equation of the plane passing through A(7, 8, 6)and parallel to XY plane


Find the Cartesian equation of the plane passing through the points A(1, 1, 2), B(0, 2, 3) C(4, 5, 6)


Find vector equation of the plane passing through A(−2 ,7 ,5) and parallel to vectors `4hat"i"  - hat"j" + 3hat"k"` and `hat"i" + hat"j" + hat"k"`


The cartesian coordinates of the point on the parabola y2 = x whose parameter is ____________.


The vector equation of the line passing through `4hati - hatj + 2hatk` and parallel to `-2hati - hatj + hatk` is ______ 


The cartesian equation of the line `overliner = (hati + hatj + hatk) + lambda(hatj + hatk)` is ______


Equation of Z-axis is ______


The shortest distance between A (1, 0, 2) and the line `(x + 1)/3 = (y - 2)/(-2) = (z + 1)/(-1)` is given by line joining A and B, then B in the line is ______ 


The equation of line is `(x - 1)/2 = (y + 1)/(-2) = (z + 1)/1`. The co-ordinates of the point on the line at a distance of 3 units from the point (1, -1, -1) is ______ 


The equation of line equally inclined to co-ordinate axes and passing through (–3, 2, –5) is ______.


The line passing through the points (5, 1, a) and (3, b, 1) crosses the YZ – plane at the point `(0, 17/2, (-13)/2)`, then ______.


The centres of the circles x2 + y2 = 1, x2 + y2 + 6x – 2y = 1 and x2 + y2 – 12x + 4y = 1 are ______.


Find the Cartesian equation of the plane passing through A(–1, 2, 3), the direction ratios of whose normal are 0, 2, 5.


Find the vector equation of the line passing through the points A(2, 3, –1) and B(5, 1, 2).


Find the direction cosines of the line `(2x - 1)/3 = 3y = (4z + 3)/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×