English

Find the perpendicular distance of the origin from the plane 6x – 2y + 3z – 7 = 0. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the perpendicular distance of the origin from the plane 6x – 2y + 3z – 7 = 0.

Sum

Solution

The equation of the plane is
6x – 2y + 3z – 7 = 0
∴ its vector equation is

`bar"r".(6hat"i" - 2hat"j" + 3hat"k")` = 7         ...(1)

where `bar"r" = xhat"i" + yhat"j" + zhat"k"`

∴ `bar"n" = 6hat"i" - 2hat"j" + 3hat"k"` is normal to the plane.

`|bar"n"| = sqrt(6^2 + (-2)^2 + 3^2)`

= `sqrt(49)`
= 7
Unit vector along `bar"n"` is

`hat"n" = bar"n"/|bar"n"|= (6hat"i" - 2hat"j" + 3hat"k")/(7)`
Dividing bothsides of (1) by 7, we get

`bar"r".((6hat"i" - 2hat"j" + 3hat"k")/7) = (7)/(7)`

∴ `bar"r".hat"n"`= 1
Comparing with normal form of equation of the plane `hat"r".hat"n" = p` it follows that length of perpendicular from origin is 1 unit.
Alternative Method :
The equation of the plane is 6x – 2y + 3z – 7 = 0
i.e. `(6/(6^2 + (-2)^2 + 3))x - (2/(sqrt(6^2) + (-2)^2 + 3^2))y + ((3)/(sqrt(6^2 + (-2)^2 + 3^2)))z = 7/(sqrt(6^2 + (-2)^2 + 3)`

i.e. `(6)/(7)x -(2)/(7)y + (3)/(7)z = (7)/(7)` = 1
This is the normal form of the equation of plane.
∴ perpendicular distance of the origin frm the plane is p = 1 unit.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Line and Plane - Exercise 6.3 [Page 216]

RELATED QUESTIONS

Find the co-ordinates of the foot of the perpendicular drawn from the point `2hati - hatj + 5hatk` to the line `barr = (11hati - 2hatj - 8hatk) + λ(10hati - 4hatj - 11hatk).` Also find the length of the perpendicular.


A(1, 0, 4), B(0, -11, 13), C(2, -3, 1) are three points and D is the foot of the perpendicular from A to BC. Find the co-ordinates of D.


If the lines `(x - 1)/2 = (y + 1)/3 = (z - 1)/4 and (x - 3)/1 = (y - k)/2 = z/1` intersect each other, then find k.


Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x + 6y – 3z = 63.


Reduce the equation `bar"r".(3hat"i" + 4hat"j" + 12hat"k")` to normal form and hence find
(i) the length of the perpendicular from the origin to the plane
(ii) direction cosines of the normal.


Show that the line `bar"r" = (2hat"j" - 3hat"k") + lambda(hat"i" + 2hat"j" + 3hat"k") and bar"r" = (2hat"i" + 6hat"j" + 3hat"k") + mu(2hat"i" + 3hat"j" + 4hat"k")` are coplanar. Find the equation of the plane determined by them.


Choose correct alternatives :

The length of the perpendicular from (1, 6,3) to the line `x/(1) = (y - 1)/(2) =(z - 2)/(3)`


The perpendicular distance of the plane 2x + 3y – z = k from the origin is `sqrt(14)` units, the value of k is ______.


Choose correct alternatives :

The equation of the plane passing through (2, -1, 3) and making equal intercepts on the coordinate axes is


Choose correct alternatives :

The equation of the plane passing through the points (1, −1, 1), (3, 2, 4) and parallel to the Y-axis is ______  


Choose correct alternatives :

The equation of the plane in which the line `(x - 5)/(4) = (y - 7)/(4) = (z + 3)/(-5) and (x - 8)/(7) = (y - 4)/(1) = (z - 5)/(3)` lie, is


Choose correct alternatives :

The foot of perpendicular drawn from the point (0,0,0) to the plane is (4, -2, -5) then the equation of the plane is


The equation of X axis is ______ 


If the foot of the perpendicular drawn from the origin to the plane is (4, −2, -5), then the equation of the plane is ______ 


The coordinates of the foot of perpendicular drawn from the origin to the plane 2x + y − 2z = 18 are ______ 


Find the perpendicular distance of origin from the plane 6x − 2y + 3z - 7 = 0


Find the equation of the plane passing through the point (7, 8, 6) and parallel to the plane `bar"r"*(6hat"i" + 8hat"j" + 7hat"k")` = 0


The equation of a plane containing the point (1, - 1, 2) and perpendicular to the planes 2x + 3y - 2z = 5 and x + 2y - 3z = 8 is ______.


If the line `(x - 3)/2 = (y + 2)/-1 = (z + 4)/3` lies in the plane lx + my - z = 9, then l2 + m2 is equal to ______


The intercepts of the plane 3x - 4y + 6z = 48 on the co-ordinate axes are ______


XY-plane divides the line joining the points A(2, 3, -5) and B(1, -2, -3) in the ratio ______ 


The equation of the plane through the point (2, -1, -3) and parallel to the lines `(x - 1)/3 = (y + 2)/2 = z/(-4)` and `x/2 = (y - 1)/(-3) = (z - 2)/2` is ______


The equation of the plane, which bisects the line joining the points (1, 2, 3) and (3, 4, 5) at right angles is ______ 


A plane which passes through the point (3, 2, 0) and the line `(x - 3)/1 = (y - 6)/5, (z - 4)/4` is ______ 


Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 3y + 5 = 0.


If the plane passing through the points (1, 2, 3), (2, 3, 1) and (3, 1, 2) is ax + by + cz = d then a + 2b + 3c = ______.


If the plane x - 3y + 5z = d passes through the point (1, 2, 4), then the lengths of intercepts cut by it on the axes of X, Y, Z are respectively ______ 


The equation of the 1 plane passing through the points (1, –1, 1), (3, 2, 4) and parallel to Y-axis is ______.


The equation of the plane through the line x + y + z + 3 = 0 = 2x – y + 3z + 1 and parallel to the line `x/1 = y/2 = z/3`, is ______.


If A and B are foot of perpendicular drawn from point Q(a, b, c) to the planes yz and zx, then equation of plane through the points A, B and O is ______.


If the foot of the perpendicular drawn from the origin to the plane is (4, –2, 5), then the equation of the plane is ______.


The coordinates of the foot of the perpendicular from the point P(1, 0, 0) in the line `(x - 1)/2 = (y + 1)/-3 = (z + 10)/8` are ______.


Find the equation of the plane which contains the line of intersection of the planes x + 2y + 4z = 4 and 2x – 3y – z = 9 and which is perpendicular to the plane 4x – 3y + 5z = 10.


Find the point of intersection of the line `(x + 1)/2 = (y - 1)/3 = (z - 2)/1` with the plane x + 2y – z = 6.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×