Advertisements
Advertisements
Question
If the foot of the perpendicular drawn from the origin to the plane is (4, −2, -5), then the equation of the plane is ______
Options
4x + y + 5z = 14
4x − 2y − 5z = 45
x − 2y − 5z = 10
4x + y + 6z = 11
Solution
4x − 2y − 5z = 45
Explanation:
O ≡ (0, 0, 0)
P ≡ (4, -2, -5)
`vec"a"=4hat"i"-2hat"j"-5hat"k"`
`vec"n"=vec"op"=4hat"i"-2hat"j"-5hat"k"`
⇒ `vec"PR".vec"n"=0`
⇒ `[vec"r"-vec"a"].vec"n"=0`
⇒ `vec"r".vec"n"-vec"a".vec"n"=0`
⇒ `vec"r".(4hat"i"-2hat"j"-5hat"k")-(4hat"i"-2hat"j"-5hat"k").(4hat"i"-2hat"j"-5hat"k")=0`
⇒ `vec"r".(4hat"i"-2hat"j"-5hat"k")-[16+4+25]=0`
⇒ `vec"r"=xhat"i"+"y"hat"j"+"z"hat"k"`
R ≡ (x, y, z)
⇒ `(xhat"i"+"y"hat"j"+"z"hat"k").(4hat"i"-2hat"j"-5hat"k")=45`
⇒ 4x - 2y - 5z = 45
APPEARS IN
RELATED QUESTIONS
Find the length of the perpendicular (2, –3, 1) to the line `(x + 1)/(2) = (y - 3)/(3) = (z + 1)/(-1)`.
If the lines `(x - 1)/2 = (y + 1)/3 = (z - 1)/4 and (x - 3)/1 = (y - k)/2 = z/1` intersect each other, then find k.
Find the vector equation of a plane which is at 42 unit distance from the origin and which is normal to the vector `2hati + hatj - 2hatk`.
Find the vector equation of the plane passing through the point having position vector `hati + hatj + hatk` and perpendicular to the vector `4hati + 5hatj + 6hatk`.
Show that the line `bar"r" = (2hat"j" - 3hat"k") + lambda(hat"i" + 2hat"j" + 3hat"k") and bar"r" = (2hat"i" + 6hat"j" + 3hat"k") + mu(2hat"i" + 3hat"j" + 4hat"k")` are coplanar. Find the equation of the plane determined by them.
Find the co-ordinates of the foot of the perpendicular drawn from the point (0, 2, 3) to the line `(x + 3)/(5) = (y - 1)/(2) = (z + 4)/(3)`.
Choose correct alternatives :
If the line `x/(3) = y/(4)` = z is perpendicular to the line `(x - 1)/k = (y + 2)/(3) = (z - 3)/(k - 1)`, then the value of k is
Choose correct alternatives :
Equation of X-axis is ______.
The perpendicular distance of the plane 2x + 3y – z = k from the origin is `sqrt(14)` units, the value of k is ______.
Choose correct alternatives :
The equation of the plane passing through (2, -1, 3) and making equal intercepts on the coordinate axes is
Choose correct alternatives :
The direction cosines of the normal to the plane 2x – y + 2z = 3 are ______
Choose correct alternatives :
The equation of the plane passing through the points (1, −1, 1), (3, 2, 4) and parallel to the Y-axis is ______
Choose correct alternatives :
The equation of the plane in which the line `(x - 5)/(4) = (y - 7)/(4) = (z + 3)/(-5) and (x - 8)/(7) = (y - 4)/(1) = (z - 5)/(3)` lie, is
Solve the following :
Find the perpendicular distance of the origin from the plane 6x + 2y + 3z - 7 = 0
If the planes 2x – my + z = 3 and 4x – y + 2z = 5 are parallel then m = ______
The coordinates of the foot of perpendicular drawn from the origin to the plane 2x + y − 2z = 18 are ______
Find the perpendicular distance of origin from the plane 6x − 2y + 3z - 7 = 0
Find the vector equation of a plane at a distance 6 units from the origin and to which vector `2hat"i" - hat"j" + 2hat"k"` is normal
Show that the lines `(x + 1)/(-10) = (y + 3)/(-1) = (z - 4)/(1)` and `(x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/4` intersect each other.also find the coordinates of the point of intersection
Find the vector equation of the plane which bisects the segment joining A(2, 3, 6) and B(4, 3, −2) at right angles
If z1 and z2 are z-coordinates of the points of trisection of the segment joining the points A (2, 1, 4), B (–1, 3, 6) then z1 + z2 = ______.
If the line `(x - 3)/2 = (y + 2)/-1 = (z + 4)/3` lies in the plane lx + my - z = 9, then l2 + m2 is equal to ______
The intercepts of the plane 3x - 4y + 6z = 48 on the co-ordinate axes are ______
Equations of planes parallel to the plane x - 2y + 2z + 4 = 0 which are at a distance of one unit from the point (1, 2, 3) are _______.
If line `(2x - 4)/lambda = ("y" - 1)/2 = ("z" - 3)/1` and `(x - 1)/1 = (3"y" - 1)/lambda = ("z" - 2)/1` are perpendicular to each other then λ = ______.
The equation of the plane through (1, 2, -3) and (2, -2, 1) and parallel to the X-axis is ______
A plane which passes through the point (3, 2, 0) and the line `(x - 3)/1 = (y - 6)/5, (z - 4)/4` is ______
The equation of the plane passing through the intersection of the planes x + 2y + 3z + 4 = 0 and 4x + 3y + 2z + 1 = 0 and the origin is ______.
If the plane x - 3y + 5z = d passes through the point (1, 2, 4), then the lengths of intercepts cut by it on the axes of X, Y, Z are respectively ______
The equation of the plane passing through the points (1, –2, 1), (2, –1, –3) and (0, 1, 5) is ______.
The equation of the plane passing through a point having position vector`-2hat"i" + 7hat"j" + 5hat"k"` and parallel to the vectors `4hat"i" - hat"j" + 3hat"k"` and `hat"i" + hat"j" + hat"k"` is ______.
If the line `(x + 1)/2 = (y - 5)/3 = (z - "p")/6` lies in the plane 3x – 14y + 6z + 49 = 0, then the value of p is ______.
The equation of the 1 plane passing through the points (1, –1, 1), (3, 2, 4) and parallel to Y-axis is ______.
If the mirror image of the point (2, 4, 7) in the plane 3x – y + 4z = 2 is (a, b, c), then 2a + b + 2c is equal to ______.
Let Q be the mirror image of the point P(1, 2, 1) with respect to the plane x + 2y + 2z = 16. Let T be a plane passing through the point Q and contains the line `vecr = -hatk + λ(hati + hatj + 2hatk)`, λ ∈ R. Then, which of the following points lies on T?
The equation of the plane through the line x + y + z + 3 = 0 = 2x – y + 3z + 1 and parallel to the line `x/1 = y/2 = z/3`, is ______.
If A and B are foot of perpendicular drawn from point Q(a, b, c) to the planes yz and zx, then equation of plane through the points A, B and O is ______.
What will be the equation of plane passing through a point (1, 4, – 2) and parallel to the given plane – 2x + y – 3z = 9?
If the foot of the perpendicular drawn from the origin to the plane is (4, –2, 5), then the equation of the plane is ______.
Find the equation of the plane which contains the line of intersection of the planes x + 2y + 4z = 4 and 2x – 3y – z = 9 and which is perpendicular to the plane 4x – 3y + 5z = 10.
Find the point of intersection of the line `(x + 1)/2 = (y - 1)/3 = (z - 2)/1` with the plane x + 2y – z = 6.