हिंदी

If the foot of the perpendicular drawn from the origin to the plane is (4, −2, -5), then the equation of the plane is ______ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If the foot of the perpendicular drawn from the origin to the plane is (4, −2, -5), then the equation of the plane is ______ 

विकल्प

  • 4x + y + 5z = 14

  • 4x − 2y − 5z = 45

  • x − 2y − 5z = 10

  • 4x + y + 6z = 11

MCQ
रिक्त स्थान भरें

उत्तर

4x − 2y − 5z = 45

Explanation:

O ≡ (0, 0, 0)

P ≡ (4, -2, -5)

`vec"a"=4hat"i"-2hat"j"-5hat"k"`

`vec"n"=vec"op"=4hat"i"-2hat"j"-5hat"k"`

⇒ `vec"PR".vec"n"=0`

⇒ `[vec"r"-vec"a"].vec"n"=0`

⇒ `vec"r".vec"n"-vec"a".vec"n"=0`

⇒ `vec"r".(4hat"i"-2hat"j"-5hat"k")-(4hat"i"-2hat"j"-5hat"k").(4hat"i"-2hat"j"-5hat"k")=0`

⇒ `vec"r".(4hat"i"-2hat"j"-5hat"k")-[16+4+25]=0`

⇒ `vec"r"=xhat"i"+"y"hat"j"+"z"hat"k"`

R ≡ (x, y, z)

⇒ `(xhat"i"+"y"hat"j"+"z"hat"k").(4hat"i"-2hat"j"-5hat"k")=45`

⇒ 4x - 2y - 5z = 45

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.6: Line and Plane - Multiple choice questions

संबंधित प्रश्न

A(1, 0, 4), B(0, -11, 13), C(2, -3, 1) are three points and D is the foot of the perpendicular from A to BC. Find the co-ordinates of D.


Find the perpendicular distance of the origin from the plane 6x – 2y + 3z – 7 = 0.


Reduce the equation `bar"r".(3hat"i" + 4hat"j" + 12hat"k")` to normal form and hence find
(i) the length of the perpendicular from the origin to the plane
(ii) direction cosines of the normal.


Find the vector equation of the plane passing through the point having position vector `hati + hatj + hatk` and perpendicular to the vector `4hati + 5hatj + 6hatk`.


Find the co-ordinates of the foot of the perpendicular drawn from the point (0, 2, 3) to the line `(x + 3)/(5) = (y - 1)/(2) = (z + 4)/(3)`.


Choose correct alternatives :

The length of the perpendicular from (1, 6,3) to the line `x/(1) = (y - 1)/(2) =(z - 2)/(3)`


Choose correct alternatives :

Equation of X-axis is ______.


The perpendicular distance of the plane 2x + 3y – z = k from the origin is `sqrt(14)` units, the value of k is ______.


Choose correct alternatives :

The direction cosines of the normal to the plane 2x – y + 2z = 3 are ______ 


Choose correct alternatives :

The equation of the plane passing through the points (1, −1, 1), (3, 2, 4) and parallel to the Y-axis is ______  


Choose correct alternatives :

The foot of perpendicular drawn from the point (0,0,0) to the plane is (4, -2, -5) then the equation of the plane is


Solve the following :

Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x + 3y + 6z = 49.


The equation of X axis is ______ 


The coordinates of the foot of perpendicular drawn from the origin to the plane 2x + y − 2z = 18 are ______ 


Find the perpendicular distance of origin from the plane 6x − 2y + 3z - 7 = 0


Find the equation of the plane passing through the point (7, 8, 6) and parallel to the plane `bar"r"*(6hat"i" + 8hat"j" + 7hat"k")` = 0


Show that the lines `(x + 1)/(-10) = (y + 3)/(-1) = (z - 4)/(1)` and `(x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/4` intersect each other.also find the coordinates of the point of intersection


Find the vector equation of the plane which bisects the segment joining A(2, 3, 6) and B(4, 3, −2) at right angles


The equation of a plane containing the point (1, - 1, 2) and perpendicular to the planes 2x + 3y - 2z = 5 and x + 2y - 3z = 8 is ______.


If the line `(x - 3)/2 = (y + 2)/-1 = (z + 4)/3` lies in the plane lx + my - z = 9, then l2 + m2 is equal to ______


If 0 ≤ x < 2π, then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x = 0, is ______


The intercepts of the plane 3x - 4y + 6z = 48 on the co-ordinate axes are ______


Equations of planes parallel to the plane x - 2y + 2z + 4 = 0 which are at a distance of one unit from the point (1, 2, 3) are _______.


The equation of the plane through (1, 2, -3) and (2, -2, 1) and parallel to the X-axis is ______ 


The equation of the plane through the point (2, -1, -3) and parallel to the lines `(x - 1)/3 = (y + 2)/2 = z/(-4)` and `x/2 = (y - 1)/(-3) = (z - 2)/2` is ______


The equation of the plane, which bisects the line joining the points (1, 2, 3) and (3, 4, 5) at right angles is ______ 


A plane which passes through the point (3, 2, 0) and the line `(x - 3)/1 = (y - 6)/5, (z - 4)/4` is ______ 


If the plane passing through the points (1, 2, 3), (2, 3, 1) and (3, 1, 2) is ax + by + cz = d then a + 2b + 3c = ______.


The equation of the plane passing through the intersection of the planes x + 2y + 3z + 4 = 0 and 4x + 3y + 2z + 1 = 0 and the origin is ______.


The d.r.s of normal to the plane through (1, 0, 0), (0, 1, 0) which makes an angle `pi/4` with plane x + y = 3, are ______.


If plane x + ay + z = 4 has equal intercepts on axes, then 'a' is equal to ______.


The equation of the plane through the line x + y + z + 3 = 0 = 2x – y + 3z + 1 and parallel to the line `x/1 = y/2 = z/3`, is ______.


If A and B are foot of perpendicular drawn from point Q(a, b, c) to the planes yz and zx, then equation of plane through the points A, B and O is ______.


If the foot of the perpendicular drawn from the origin to the plane is (4, –2, 5), then the equation of the plane is ______.


Find the equation of the plane containing the lines `(x - 1)/2 = (y + 1)/-1 = z/3` and `x/2 = (y - 2)/-1 = (z + 1)/3`.


Reduce the equation `barr*(3hati - 4hatj + 12hatk)` = 3 to the normal form and hence find the length of perpendicular from the origin to the plane.


Find the vector equation of the line passing through the point (–2, 1, 4) and perpendicular to the plane `barr*(4hati - 5hatj + 7hatk)` = 15


Find the point of intersection of the line `(x + 1)/2 = (y - 1)/3 = (z - 2)/1` with the plane x + 2y – z = 6.


A mobile tower is situated at the top of a hill. Consider the surface on which the tower stands as a plane having points A(1, 0, 2), B(3, –1, 1) and C(1, 2, 1) on it. The mobile tower is tied with three cables from the points A, B and C such that it stands vertically on the ground. The top of the tower is at point P(2, 3, 1) as shown in the figure below. The foot of the perpendicular from the point P on the plane is at the point `Q(43/29, 77/29, 9/29)`.


Answer the following questions.

  1. Find the equation of the plane containing the points A, B and C.
  2. Find the equation of the line PQ.
  3. Calculate the height of the tower.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×