Advertisements
Advertisements
प्रश्न
Reduce the equation `bar"r".(3hat"i" + 4hat"j" + 12hat"k")` to normal form and hence find
(i) the length of the perpendicular from the origin to the plane
(ii) direction cosines of the normal.
उत्तर
The normal form of equation of a plane is `bar"r".hat"n" = p` where `hat"n"` is unit vector along the normal and p is the length of perpendicular drawn from origin to the plane.
Given pane is `bar"r".(3hat"i" + 4hat"j" + 12hat"k")` = 78 ...(1)
`bar"n" = 3hat"i" + 4hat"j" + 12hat"k"` is normal to the plane
∴ `|bar"n"| = sqrt(3^2 + 4^2 + 12^2) = sqrt(169)` = 13
Dividing both sides of (1) by 13, get
`bar"r".((3hat"i" + 4hat"j" + 12hat"k")/13) = (78)/(13)`
i.e. `bar"r".(3/13hat"i" + 4/13hat"j" + 12/13hat"k")` = 6
This is the normal form of the equation of plane.
Comparing with `bar"r".hat"n" = p`,
(i) the length of the perpendicular from the origin to plane is 6.
(ii) direction cosines of the normal are `(3)/(13),(4)/(13),(12)/(13)`.
APPEARS IN
संबंधित प्रश्न
Find the length of the perpendicular (2, –3, 1) to the line `(x + 1)/(2) = (y - 3)/(3) = (z + 1)/(-1)`.
Find the co-ordinates of the foot of the perpendicular drawn from the point `2hati - hatj + 5hatk` to the line `barr = (11hati - 2hatj - 8hatk) + λ(10hati - 4hatj - 11hatk).` Also find the length of the perpendicular.
Find the perpendicular distance of the origin from the plane 6x – 2y + 3z – 7 = 0.
Find the co-ordinates of the foot of the perpendicular drawn from the point (0, 2, 3) to the line `(x + 3)/(5) = (y - 1)/(2) = (z + 4)/(3)`.
Choose correct alternatives :
If the line `x/(3) = y/(4)` = z is perpendicular to the line `(x - 1)/k = (y + 2)/(3) = (z - 3)/(k - 1)`, then the value of k is
Choose correct alternatives :
The length of the perpendicular from (1, 6,3) to the line `x/(1) = (y - 1)/(2) =(z - 2)/(3)`
Choose correct alternatives :
The equation of the plane passing through (2, -1, 3) and making equal intercepts on the coordinate axes is
Choose correct alternatives :
The equation of the plane passing through the points (1, −1, 1), (3, 2, 4) and parallel to the Y-axis is ______
If the foot of the perpendicular drawn from the origin to the plane is (4, −2, -5), then the equation of the plane is ______
Find the direction ratios of the normal to the plane 2x + 3y + z = 7
If the normal to the plane has direction ratios 2, −1, 2 and it’s perpendicular distance from origin is 6, find its equation
Find the equation of the plane passing through the point (7, 8, 6) and parallel to the plane `bar"r"*(6hat"i" + 8hat"j" + 7hat"k")` = 0
Show that the lines `(x + 1)/(-10) = (y + 3)/(-1) = (z - 4)/(1)` and `(x + 10)/(-1) = (y + 1)/(-3) = (z - 1)/4` intersect each other.also find the coordinates of the point of intersection
Find the vector equation of the plane which bisects the segment joining A(2, 3, 6) and B(4, 3, −2) at right angles
If z1 and z2 are z-coordinates of the points of trisection of the segment joining the points A (2, 1, 4), B (–1, 3, 6) then z1 + z2 = ______.
If the line `(x - 3)/2 = (y + 2)/-1 = (z + 4)/3` lies in the plane lx + my - z = 9, then l2 + m2 is equal to ______
The equation of a plane containing the line of intersection of the planes 2x - y - 4 = 0 and y + 2z - 4 = 0 and passing through the point (1, 1, 0) is ______
Equations of planes parallel to the plane x - 2y + 2z + 4 = 0 which are at a distance of one unit from the point (1, 2, 3) are _______.
Equation of the plane perpendicular to the line `x/1 = y/2 = z/3` and passing through the point (2, 3, 4) is ______
Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 3y + 5 = 0.
If the plane passing through the points (1, 2, 3), (2, 3, 1) and (3, 1, 2) is ax + by + cz = d then a + 2b + 3c = ______.
If the plane x - 3y + 5z = d passes through the point (1, 2, 4), then the lengths of intercepts cut by it on the axes of X, Y, Z are respectively ______
The d.r.s of normal to the plane through (1, 0, 0), (0, 1, 0) which makes an angle `pi/4` with plane x + y = 3, are ______.
The equation of the plane passing through the points (1, –2, 1), (2, –1, –3) and (0, 1, 5) is ______.
The equation of the plane passing through a point having position vector`-2hat"i" + 7hat"j" + 5hat"k"` and parallel to the vectors `4hat"i" - hat"j" + 3hat"k"` and `hat"i" + hat"j" + hat"k"` is ______.
If plane x + ay + z = 4 has equal intercepts on axes, then 'a' is equal to ______.
Find the vector equation of the plane passing through the point A(–1, 2, –5) and parallel to the vectors `4hati - hatj + 3hatk` and `hati + hatj - hatk`.
Let P be a plane Ix + my + nz = 0 containing the line, `(1 - x)/1 = ("y" + 4)/2 = ("z" + 2)/3`. If plane P divides the line segment AB joining points A(–3, –6, 1) and B(2, 4, –3) in ratio k:1 then the value of k is equal to ______.
If A and B are foot of perpendicular drawn from point Q(a, b, c) to the planes yz and zx, then equation of plane through the points A, B and O is ______.
What will be the equation of plane passing through a point (1, 4, – 2) and parallel to the given plane – 2x + y – 3z = 9?
Find the equation of plane which is at a distance of 4 units from the origin and which is normal to the vector `2hati - 2hatj + hatk`.
The coordinates of the foot of the perpendicular from the point P(1, 0, 0) in the line `(x - 1)/2 = (y + 1)/-3 = (z + 10)/8` are ______.
A mobile tower is situated at the top of a hill. Consider the surface on which the tower stands as a plane having points A(1, 0, 2), B(3, –1, 1) and C(1, 2, 1) on it. The mobile tower is tied with three cables from the points A, B and C such that it stands vertically on the ground. The top of the tower is at point P(2, 3, 1) as shown in the figure below. The foot of the perpendicular from the point P on the plane is at the point `Q(43/29, 77/29, 9/29)`.
Answer the following questions.
- Find the equation of the plane containing the points A, B and C.
- Find the equation of the line PQ.
- Calculate the height of the tower.
Find the equation of the plane containing the line `x/(-2) = (y - 1)/3 = (1 - z)/1` and the point (–1, 0, 2).