हिंदी

A mobile tower is situated at the top of a hill. Consider the surface on which the tower stands as a plane having points A(1, 0, 2), B(3, –1, 1) and C(1, 2, 1) on it - Mathematics

Advertisements
Advertisements

प्रश्न

A mobile tower is situated at the top of a hill. Consider the surface on which the tower stands as a plane having points A(1, 0, 2), B(3, –1, 1) and C(1, 2, 1) on it. The mobile tower is tied with three cables from the points A, B and C such that it stands vertically on the ground. The top of the tower is at point P(2, 3, 1) as shown in the figure below. The foot of the perpendicular from the point P on the plane is at the point `Q(43/29, 77/29, 9/29)`.


Answer the following questions.

  1. Find the equation of the plane containing the points A, B and C.
  2. Find the equation of the line PQ.
  3. Calculate the height of the tower.
योग

उत्तर

i. A(1, 0, 2), B(3, –1, 1), C(1, 2, 1)

Equation of plane

`|(x - x_1, y - y_1, z - z_1),(x_2 - x_1, y_2 - y_1, z_2 - z_1),(x_3 - x_1, y_3 - y_1, z_3 - z_1)| = 0`

`\implies |(x - 1, y - 0, z - 2),(3 - 1, -1 - 0, 1 - 2),(1 - 1, 2 - 0, 1 - 2)| = 0`

`\implies |(x - 1, y - 0, z - 2),(2, -1, -1),(0, 2, -1)| = 0`

`\implies` (x – 1)(1 + 2) – y(–2 – 0) + (z – 2)(4 – 0) = 0

`\implies` 3(x – 1) + 2y + 4(z – 2) = 0

`\implies` 3x – 3 + 2y + 4z – 8 = 0

`\implies` 3x + 2y + 4z = 11

ii. Let a and b be the position vectors of the points P(2, 3, 1) and `Q(43/29, 77/29, 9/29)` respectively.

Then, `veca = 2hati + 3hatj + hatk` and `vecb = 43/29hati + 77/29hatj + 9/29hatk`

Let `vecr` represent the position vector of any point A(x, y, z) on the line connecting points P and Q. The vector equation for the line is

`vecr = veca + λ(vecb - veca)`

= `(2hati + 3hatj + hatk) + λ[(43/29 - 2)hati + (77/29 - 3)hatj + (9/29 - 1)hatk]`

= `(2hati + 3hatj + hatk) + λ[((-15)/29)hati + ((-10)/29)hatj + ((-20)/29)hatk]`

Where λ is a parameter.

iii. The coordinates of the point P(2, 3, 1) and the equation of the plane in which the tower's bottom is located are 3x + 2y + 4z = 11.

Height of tower = `|(3(2) + 2(3) + 4(1) - 11)/sqrt(3^2 + 2^2 + 4^2)|`

= `|(6 + 6 + 4 - 11)/sqrt(9 + 4 + 16)|`

= `5/sqrt(29)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2023-2024 (February) Official

संबंधित प्रश्न

Find the perpendicular distance of the point (1, 0, 0) from the line `(x - 1)/(2) = (y + 1)/(-3) = (z + 10)/(8)` Also find the co-ordinates of the foot of the perpendicular.


Find the vector equation of a plane which is at 42 unit distance from the origin and which is normal to the vector `2hati + hatj - 2hatk`.


Find the perpendicular distance of the origin from the plane 6x – 2y + 3z – 7 = 0.


Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x + 6y – 3z = 63.


Show that the line `bar"r" = (2hat"j" - 3hat"k") + lambda(hat"i" + 2hat"j" + 3hat"k") and bar"r" = (2hat"i" + 6hat"j" + 3hat"k") + mu(2hat"i" + 3hat"j" + 4hat"k")` are coplanar. Find the equation of the plane determined by them.


Choose correct alternatives :

If the line `x/(3) = y/(4)` = z is perpendicular to the line `(x - 1)/k = (y + 2)/(3) = (z - 3)/(k - 1)`, then the value of k is 


Choose correct alternatives :

The equation of the plane passing through (2, -1, 3) and making equal intercepts on the coordinate axes is


Choose correct alternatives :

The direction cosines of the normal to the plane 2x – y + 2z = 3 are ______ 


Choose correct alternatives :

The equation of the plane passing through the points (1, −1, 1), (3, 2, 4) and parallel to the Y-axis is ______  


Choose correct alternatives :

The equation of the plane in which the line `(x - 5)/(4) = (y - 7)/(4) = (z + 3)/(-5) and (x - 8)/(7) = (y - 4)/(1) = (z - 5)/(3)` lie, is


If the planes 2x – my + z = 3 and 4x – y + 2z = 5 are parallel then m = ______ 


Find direction cosines of the normal to the plane `bar"r"*(3hat"i" + 4hat"k")` = 5


Find the equation of the plane passing through the point (7, 8, 6) and parallel to the plane `bar"r"*(6hat"i" + 8hat"j" + 7hat"k")` = 0


Equation of plane parallel to ZX-plane and passing through the point (0, 5, 0) is ______


XY-plane divides the line joining the points A(2, 3, -5) and B(1, -2, -3) in the ratio ______ 


The equation of the plane through the point (2, -1, -3) and parallel to the lines `(x - 1)/3 = (y + 2)/2 = z/(-4)` and `x/2 = (y - 1)/(-3) = (z - 2)/2` is ______


Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 3y + 5 = 0.


If the plane passing through the points (1, 2, 3), (2, 3, 1) and (3, 1, 2) is ax + by + cz = d then a + 2b + 3c = ______.


Let the line `(x - 2)/3 = (y - 1)/(-5) = (z + 2)/2` lie in the plane x + 3y - αz + β = 0. Then, (α, β) equals ______ 


If the line `(x + 1)/2 = (y - 5)/3 = (z - "p")/6` lies in the plane 3x – 14y + 6z + 49 = 0, then the value of p is ______.


The equation of the 1 plane passing through the points (1, –1, 1), (3, 2, 4) and parallel to Y-axis is ______.


The equation of the plane through the line x + y + z + 3 = 0 = 2x – y + 3z + 1 and parallel to the line `x/1 = y/2 = z/3`, is ______.


The equation of the plane passes through the point (2, 5, –3) perpendicular to the plane x + 2y + 2z = 1 and x – 2y + 3z = 4 is ______.


If the foot of the perpendicular drawn from the origin to the plane is (4, –2, 5), then the equation of the plane is ______.


Find the equation of the plane containing the lines `(x - 1)/2 = (y + 1)/-1 = z/3` and `x/2 = (y - 2)/-1 = (z + 1)/3`.


Find the equation of plane which is at a distance of 4 units from the origin and which is normal to the vector `2hati - 2hatj + hatk`.


Find the point of intersection of the line `(x + 1)/2 = (y - 1)/3 = (z - 2)/1` with the plane x + 2y – z = 6.


The perpendicular distance of the plane `bar r. (3 hat i + 4 hat j + 12 hat k) = 78` from the origin is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×