हिंदी

Show that the line rjkijkandrijkijkr¯=(2j^-3k^)+λ(i^+2j^+3k^)andr¯=(2i^+6j^+3k^)+μ(2i^+3j^+4k^) are coplanar. Find the equation of the plane determined by them. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Show that the line `bar"r" = (2hat"j" - 3hat"k") + lambda(hat"i" + 2hat"j" + 3hat"k") and bar"r" = (2hat"i" + 6hat"j" + 3hat"k") + mu(2hat"i" + 3hat"j" + 4hat"k")` are coplanar. Find the equation of the plane determined by them.

योग

उत्तर

The lines `bar"r" = bar"a"_1 + lambda_1bar"b"_1 and bar"r" = bar"a"_2 + lambda_2bar"b"_2` are coplanar If `bar"a"_1.(bar"b"_1 xx bar"b"_2) = bar"a"_2.(bar"b"_1 xx bar"b"_2)`

Here `bar"a"_1 = 2hat"j" - 3hat"k", bar"a"_2 = 2hat"i" + 6hat"j" + 3hat"k"`,

`bar"b"_1 = hat"i" + 2hat"j" + 3hat"k", bar"b"_2 = 2hat"i" + 3hat"j" + 4hat"k"`

∴ `bar"a"_2 - bar"a"_1 = (2hat"i" + 6hat"j" + 3hat"k") - (2hat"j" - 3hat"k")`

= `2hat"i" + 4hat"j" + 6hat"k"`

`bar"b"_1 xx bar"b"_2 = |(hat"i" ,hat"j",hat"k"),(1, 2, 3),(2, 3, 4)|`

= `(8 - 9)hat"i" - (4 - 6)hat"j" + (3 - 4)hat"k"`

= `-hat"i" + 2hat"j" - hat"k"`

∴ `bar"a"_1.(bar"b"_1 xx bar"b"_2) = (2hat"j" - 3hat"k").(-hat"i" + 2hat"j" - hat"k")`

= 0(– 1) + 2(2) + (– 3)(– 1)
= 0 + 4 + 3
= 7
and `bar"a"_2.(bar"b"_1 xx bar"b"_2) = (2hat"i" + 6hat"j" + 3hat"k").(-hat"i" + 2hat"j" - hat"k")`

= 2(– 1) + 6(2) + 3(– 1)
= –2 + 12 – 3
= 7

∴ `bar"a"_1.(bar"b"_1 xx bar"b"_2) = bar"a"_2.(bar"b"_1 xx bar"b"_2)`

Hence, the given lines are coplanar.
The plane determined by these lines is given by

∴ `bar"r".(bar"b"_1 xx bar"b"_2) = bar"a"_1.(bar"b"_1 xx bar"b"_2)`

i.e. `bar"r".(-hat"i" + 2hat"j" - hat"k")` = 7

Hence, the given lines are coplnar and the equation of the plane determined bt these lines is 

`bar"r".(-hat"i" + 2hat"j" - hat"k")` = 7.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Line and Plane - Exercise 6.4 [पृष्ठ २२०]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Line and Plane
Miscellaneous Exercise 6 B | Q 16 | पृष्ठ २२६

संबंधित प्रश्न

Find the co-ordinates of the foot of the perpendicular drawn from the point `2hati - hatj + 5hatk` to the line `barr = (11hati - 2hatj - 8hatk) + λ(10hati - 4hatj - 11hatk).` Also find the length of the perpendicular.


A(1, 0, 4), B(0, -11, 13), C(2, -3, 1) are three points and D is the foot of the perpendicular from A to BC. Find the co-ordinates of D.


If the lines `(x - 1)/2 = (y + 1)/3 = (z - 1)/4 and (x - 3)/1 = (y - k)/2 = z/1` intersect each other, then find k.


Find the perpendicular distance of the origin from the plane 6x – 2y + 3z – 7 = 0.


Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x + 6y – 3z = 63.


Reduce the equation `bar"r".(3hat"i" + 4hat"j" + 12hat"k")` to normal form and hence find
(i) the length of the perpendicular from the origin to the plane
(ii) direction cosines of the normal.


Find the vector equation of the plane passing through the point having position vector `hati + hatj + hatk` and perpendicular to the vector `4hati + 5hatj + 6hatk`.


Choose correct alternatives :

The length of the perpendicular from (1, 6,3) to the line `x/(1) = (y - 1)/(2) =(z - 2)/(3)`


Choose correct alternatives :

The lines `x/(1) = y/(2) = z/(3) and (x - 1)/(-2) = (y - 2)/(-4) = (z - 3)/(6)` are


Choose correct alternatives :

The direction cosines of the normal to the plane 2x – y + 2z = 3 are ______ 


Choose correct alternatives :

The foot of perpendicular drawn from the point (0,0,0) to the plane is (4, -2, -5) then the equation of the plane is


Solve the following :

Find the perpendicular distance of the origin from the plane 6x + 2y + 3z - 7 = 0


If the planes 2x – my + z = 3 and 4x – y + 2z = 5 are parallel then m = ______ 


If the foot of the perpendicular drawn from the origin to the plane is (4, −2, -5), then the equation of the plane is ______ 


Find the direction ratios of the normal to the plane 2x + 3y + z = 7


Find direction cosines of the normal to the plane `bar"r"*(3hat"i" + 4hat"k")` = 5


Find the perpendicular distance of origin from the plane 6x − 2y + 3z - 7 = 0


The equation of a plane containing the line of intersection of the planes 2x - y - 4 = 0 and y + 2z - 4 = 0 and passing through the point (1, 1, 0) is ______


Equation of plane parallel to ZX-plane and passing through the point (0, 5, 0) is ______


If line `(2x - 4)/lambda = ("y" - 1)/2 = ("z" - 3)/1` and `(x - 1)/1 = (3"y" - 1)/lambda = ("z" - 2)/1` are perpendicular to each other then λ = ______.


The equation of the plane through (1, 2, -3) and (2, -2, 1) and parallel to the X-axis is ______ 


The equation of the plane through the point (2, -1, -3) and parallel to the lines `(x - 1)/3 = (y + 2)/2 = z/(-4)` and `x/2 = (y - 1)/(-3) = (z - 2)/2` is ______


A plane which passes through the point (3, 2, 0) and the line `(x - 3)/1 = (y - 6)/5, (z - 4)/4` is ______ 


If the plane passing through the points (1, 2, 3), (2, 3, 1) and (3, 1, 2) is ax + by + cz = d then a + 2b + 3c = ______.


The equation of the plane passing through a point having position vector`-2hat"i" + 7hat"j" + 5hat"k"` and parallel to the vectors `4hat"i" - hat"j" + 3hat"k"` and `hat"i" + hat"j" + hat"k"` is ______.


Find the vector equation of the plane passing through the point A(–1, 2, –5) and parallel to the vectors `4hati - hatj + 3hatk` and `hati + hatj - hatk`.


If the mirror image of the point (2, 4, 7) in the plane 3x – y + 4z = 2 is (a, b, c), then 2a + b + 2c is equal to ______.


Let P be a plane passing through the points (1, 0, 1), (1, –2, 1) and (0, 1, –2). Let a vector `vec"a" = αhat"i" + βhat"j" + γhat"k"` be such that `veca` is parallel to the plane P, perpendicular to `(hat"i"+2hat"j"+3hat"k")`and `vec"a".(hat"i" + hat"j" + 2hat"j")` = 2, then (α – β + γ)2 equals ______.


The equation of the plane through the line x + y + z + 3 = 0 = 2x – y + 3z + 1 and parallel to the line `x/1 = y/2 = z/3`, is ______.


If A and B are foot of perpendicular drawn from point Q(a, b, c) to the planes yz and zx, then equation of plane through the points A, B and O is ______.


Find the equation of the plane containing the lines `(x - 1)/2 = (y + 1)/-1 = z/3` and `x/2 = (y - 2)/-1 = (z + 1)/3`.


Reduce the equation `barr*(3hati - 4hatj + 12hatk)` = 3 to the normal form and hence find the length of perpendicular from the origin to the plane.


Find the point of intersection of the line `(x + 1)/2 = (y - 1)/3 = (z - 2)/1` with the plane x + 2y – z = 6.


Find the equation of the plane containing the line `x/(-2) = (y - 1)/3 = (1 - z)/1` and the point (–1, 0, 2).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×