English

Show that the line rjkijkandrijkijkr¯=(2j^-3k^)+λ(i^+2j^+3k^)andr¯=(2i^+6j^+3k^)+μ(2i^+3j^+4k^) are coplanar. Find the equation of the plane determined by them. - Mathematics and Statistics

Advertisements
Advertisements

Question

Show that the line `bar"r" = (2hat"j" - 3hat"k") + lambda(hat"i" + 2hat"j" + 3hat"k") and bar"r" = (2hat"i" + 6hat"j" + 3hat"k") + mu(2hat"i" + 3hat"j" + 4hat"k")` are coplanar. Find the equation of the plane determined by them.

Sum

Solution

The lines `bar"r" = bar"a"_1 + lambda_1bar"b"_1 and bar"r" = bar"a"_2 + lambda_2bar"b"_2` are coplanar If `bar"a"_1.(bar"b"_1 xx bar"b"_2) = bar"a"_2.(bar"b"_1 xx bar"b"_2)`

Here `bar"a"_1 = 2hat"j" - 3hat"k", bar"a"_2 = 2hat"i" + 6hat"j" + 3hat"k"`,

`bar"b"_1 = hat"i" + 2hat"j" + 3hat"k", bar"b"_2 = 2hat"i" + 3hat"j" + 4hat"k"`

∴ `bar"a"_2 - bar"a"_1 = (2hat"i" + 6hat"j" + 3hat"k") - (2hat"j" - 3hat"k")`

= `2hat"i" + 4hat"j" + 6hat"k"`

`bar"b"_1 xx bar"b"_2 = |(hat"i" ,hat"j",hat"k"),(1, 2, 3),(2, 3, 4)|`

= `(8 - 9)hat"i" - (4 - 6)hat"j" + (3 - 4)hat"k"`

= `-hat"i" + 2hat"j" - hat"k"`

∴ `bar"a"_1.(bar"b"_1 xx bar"b"_2) = (2hat"j" - 3hat"k").(-hat"i" + 2hat"j" - hat"k")`

= 0(– 1) + 2(2) + (– 3)(– 1)
= 0 + 4 + 3
= 7
and `bar"a"_2.(bar"b"_1 xx bar"b"_2) = (2hat"i" + 6hat"j" + 3hat"k").(-hat"i" + 2hat"j" - hat"k")`

= 2(– 1) + 6(2) + 3(– 1)
= –2 + 12 – 3
= 7

∴ `bar"a"_1.(bar"b"_1 xx bar"b"_2) = bar"a"_2.(bar"b"_1 xx bar"b"_2)`

Hence, the given lines are coplanar.
The plane determined by these lines is given by

∴ `bar"r".(bar"b"_1 xx bar"b"_2) = bar"a"_1.(bar"b"_1 xx bar"b"_2)`

i.e. `bar"r".(-hat"i" + 2hat"j" - hat"k")` = 7

Hence, the given lines are coplnar and the equation of the plane determined bt these lines is 

`bar"r".(-hat"i" + 2hat"j" - hat"k")` = 7.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Line and Plane - Exercise 6.4 [Page 220]

RELATED QUESTIONS

Find the length of the perpendicular (2, –3, 1) to the line `(x + 1)/(2) = (y - 3)/(3) = (z + 1)/(-1)`.


Find the perpendicular distance of the point (1, 0, 0) from the line `(x - 1)/(2) = (y + 1)/(-3) = (z + 10)/(8)` Also find the co-ordinates of the foot of the perpendicular.


Find the vector equation of a plane which is at 42 unit distance from the origin and which is normal to the vector `2hati + hatj - 2hatk`.


Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x + 6y – 3z = 63.


Reduce the equation `bar"r".(3hat"i" + 4hat"j" + 12hat"k")` to normal form and hence find
(i) the length of the perpendicular from the origin to the plane
(ii) direction cosines of the normal.


Find the co-ordinates of the foot of the perpendicular drawn from the point (0, 2, 3) to the line `(x + 3)/(5) = (y - 1)/(2) = (z + 4)/(3)`.


Choose correct alternatives :

If the line `x/(3) = y/(4)` = z is perpendicular to the line `(x - 1)/k = (y + 2)/(3) = (z - 3)/(k - 1)`, then the value of k is 


Choose correct alternatives :

The lines `x/(1) = y/(2) = z/(3) and (x - 1)/(-2) = (y - 2)/(-4) = (z - 3)/(6)` are


The perpendicular distance of the plane 2x + 3y – z = k from the origin is `sqrt(14)` units, the value of k is ______.


Choose correct alternatives :

The equation of the plane passing through the points (1, −1, 1), (3, 2, 4) and parallel to the Y-axis is ______  


Choose correct alternatives :

The equation of the plane in which the line `(x - 5)/(4) = (y - 7)/(4) = (z + 3)/(-5) and (x - 8)/(7) = (y - 4)/(1) = (z - 5)/(3)` lie, is


Solve the following :

Find the perpendicular distance of the origin from the plane 6x + 2y + 3z - 7 = 0


Find the equation of the plane passing through the point (7, 8, 6) and parallel to the plane `bar"r"*(6hat"i" + 8hat"j" + 7hat"k")` = 0


If z1 and z2 are z-coordinates of the points of trisection of the segment joining the points A (2, 1, 4), B (–1, 3, 6) then z1 + z2 = ______.


If 0 ≤ x < 2π, then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x = 0, is ______


The equation of the plane passing through the point (– 1, 2, 1) and perpendicular to the line joining the points (– 3, 1, 2) and (2, 3, 4) is ______.


Equation of the plane passing through A(-2, 2, 2), B(2, -2, -2) and perpendicular to x + 2y - 3z = 7 is ______ 


The intercepts of the plane 3x - 4y + 6z = 48 on the co-ordinate axes are ______


Equation of plane parallel to ZX-plane and passing through the point (0, 5, 0) is ______


XY-plane divides the line joining the points A(2, 3, -5) and B(1, -2, -3) in the ratio ______ 


Equation of the plane perpendicular to the line `x/1 = y/2 = z/3` and passing through the point (2, 3, 4) is ______


Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 3y + 5 = 0.


If the plane passing through the points (1, 2, 3), (2, 3, 1) and (3, 1, 2) is ax + by + cz = d then a + 2b + 3c = ______.


If the plane x - 3y + 5z = d passes through the point (1, 2, 4), then the lengths of intercepts cut by it on the axes of X, Y, Z are respectively ______ 


The d.r.s of normal to the plane through (1, 0, 0), (0, 1, 0) which makes an angle `pi/4` with plane x + y = 3, are ______.


The equation of the plane passing through a point having position vector`-2hat"i" + 7hat"j" + 5hat"k"` and parallel to the vectors `4hat"i" - hat"j" + 3hat"k"` and `hat"i" + hat"j" + hat"k"` is ______.


If the mirror image of the point (2, 4, 7) in the plane 3x – y + 4z = 2 is (a, b, c), then 2a + b + 2c is equal to ______.


Let P be a plane passing through the points (1, 0, 1), (1, –2, 1) and (0, 1, –2). Let a vector `vec"a" = αhat"i" + βhat"j" + γhat"k"` be such that `veca` is parallel to the plane P, perpendicular to `(hat"i"+2hat"j"+3hat"k")`and `vec"a".(hat"i" + hat"j" + 2hat"j")` = 2, then (α – β + γ)2 equals ______.


If A and B are foot of perpendicular drawn from point Q(a, b, c) to the planes yz and zx, then equation of plane through the points A, B and O is ______.


Find the equation of the plane containing the lines `(x - 1)/2 = (y + 1)/-1 = z/3` and `x/2 = (y - 2)/-1 = (z + 1)/3`.


Find the equation of the plane which contains the line of intersection of the planes x + 2y + 4z = 4 and 2x – 3y – z = 9 and which is perpendicular to the plane 4x – 3y + 5z = 10.


Find the point of intersection of the line `(x + 1)/2 = (y - 1)/3 = (z - 2)/1` with the plane x + 2y – z = 6.


The perpendicular distance of the plane `bar r. (3 hat i + 4 hat j + 12 hat k) = 78` from the origin is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×