English

Find the length of the perpendicular (2, –3, 1) to the line x+12=y-33=z+1-1. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the length of the perpendicular (2, –3, 1) to the line `(x + 1)/(2) = (y - 3)/(3) = (z + 1)/(-1)`.

Sum

Solution 1

Let PM be the perpendicular drawn from the point P(2, –3, 1) to the line `(x + 1)/(2) = (y - 3)/(3) = (z + 1)/(-1) = λ`   ...(Say)

The coordinates of any point on the line are given by

x = – 1 + 2λ, y = 3 + 3λ, z = – 1 – λ
Let the coordinates of M be
(–1 + 2λ, 3 + 3λ, –1 – λ)       ...(1)

The direction ratios of PM are
–1 + 2λ – 2, 3 + 3λ + 3, –1 – λ –1
i.e. 2λ – 3, 3λ + 6, – λ – 2

The direction ratios of the given line are 2, 3, –1.
Since PM is perpendicular to the given line, we get
2(2λ – 3) + 3(3λ + 6) – 1(– λ – 2) = 0
∴ 4λ – 6 + 9λ + 18 + λ + 2 = 0
∴ 14λ + 14 = 0
∴ λ = – 1.
Put λ = – 1 in (1), the coordinates of M are
(– 1 – 2, 3 – 3, – 1 + 1) i.e. (– 3, 0, 0).
∴ length of perpendicular from P to the given line
= PM

= `sqrt((- 3 - 2)^2 + (0 + 3)^2 + (0 - 1)^2)`

= `sqrt((25 + 9 + 1)`

= `sqrt(35) "units"`.

shaalaa.com

Solution 2

We know that the perpendicular distance from the point

`"P"|barα|  "to the line"  bar"r" = bar"a" + λbar"b"` is given by

`sqrt(|barα - bar"a"|^2 - [((barα - bara).barb)/[|bar"b"|)]^2`                 ...(1)

Here, `barα = 2hat"i" - 3hat"j" + hat"k", bar"a" = -hat"i" + 3hat"j" - hat"k", bar"b" = 2hat"i" + 3hat"j" - hat"k"`

∴ `barα - bar"a" = (2hat"i" - 3hat"j" + hat"k") - (-hat"i" + 3hat"j" - hat"k")`

= `3hat"i" - 6hat"j" + 2hat"k"`

∴ `|barα - bar"a"|^2` = 32 + (– 6)2 + 22 = 9 + 36 + 4 = 49

Also, `(barα - bar"a").bar"b" = (3hat"i" - 6hat"j" + 2hat"k").(2hat"i" + 3hat"j" - hat"k")`

= (3)(2) + (– 6)(3) + (2)(– 1)
= 6 – 18 – 2
= – 14

`|bar"b"| = sqrt(2^2 + 3^2 + (-1)^2) = sqrt(14)`
Substitutng these values in (1), we get
length of perpendicular from P to given line
= PM
= `sqrt(49 - ((-14)/sqrt(14))^2`

= `sqrt(49 - 14)`

= `sqrt(35)  "units"`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Line and Plane - Exercise 6.2 [Page 207]

RELATED QUESTIONS

Find the perpendicular distance of the point (1, 0, 0) from the line `(x - 1)/(2) = (y + 1)/(-3) = (z + 10)/(8)` Also find the co-ordinates of the foot of the perpendicular.


A(1, 0, 4), B(0, -11, 13), C(2, -3, 1) are three points and D is the foot of the perpendicular from A to BC. Find the co-ordinates of D.


Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x + 6y – 3z = 63.


Reduce the equation `bar"r".(3hat"i" + 4hat"j" + 12hat"k")` to normal form and hence find
(i) the length of the perpendicular from the origin to the plane
(ii) direction cosines of the normal.


Choose correct alternatives :

The length of the perpendicular from (1, 6,3) to the line `x/(1) = (y - 1)/(2) =(z - 2)/(3)`


Choose correct alternatives :

The lines `x/(1) = y/(2) = z/(3) and (x - 1)/(-2) = (y - 2)/(-4) = (z - 3)/(6)` are


The perpendicular distance of the plane 2x + 3y – z = k from the origin is `sqrt(14)` units, the value of k is ______.


Choose correct alternatives :

The direction cosines of the normal to the plane 2x – y + 2z = 3 are ______ 


Choose correct alternatives :

The equation of the plane passing through the points (1, −1, 1), (3, 2, 4) and parallel to the Y-axis is ______  


Choose correct alternatives :

The foot of perpendicular drawn from the point (0,0,0) to the plane is (4, -2, -5) then the equation of the plane is


Solve the following :

Find the perpendicular distance of the origin from the plane 6x + 2y + 3z - 7 = 0


Find direction cosines of the normal to the plane `bar"r"*(3hat"i" + 4hat"k")` = 5


Find the vector equation of a plane at a distance 6 units from the origin and to which vector `2hat"i" - hat"j" + 2hat"k"` is normal


Find the equation of the plane passing through the point (7, 8, 6) and parallel to the plane `bar"r"*(6hat"i" + 8hat"j" + 7hat"k")` = 0


The equation of a plane containing the point (1, - 1, 2) and perpendicular to the planes 2x + 3y - 2z = 5 and x + 2y - 3z = 8 is ______.


If 0 ≤ x < 2π, then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x = 0, is ______


The equation of the plane passing through the point (– 1, 2, 1) and perpendicular to the line joining the points (– 3, 1, 2) and (2, 3, 4) is ______.


The equation of a plane containing the line of intersection of the planes 2x - y - 4 = 0 and y + 2z - 4 = 0 and passing through the point (1, 1, 0) is ______


Equation of plane parallel to ZX-plane and passing through the point (0, 5, 0) is ______


If line `(2x - 4)/lambda = ("y" - 1)/2 = ("z" - 3)/1` and `(x - 1)/1 = (3"y" - 1)/lambda = ("z" - 2)/1` are perpendicular to each other then λ = ______.


Equation of the plane perpendicular to the line `x/1 = y/2 = z/3` and passing through the point (2, 3, 4) is ______


The equation of the plane through the point (2, -1, -3) and parallel to the lines `(x - 1)/3 = (y + 2)/2 = z/(-4)` and `x/2 = (y - 1)/(-3) = (z - 2)/2` is ______


Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 3y + 5 = 0.


The equation of the plane passing through the intersection of the planes x + 2y + 3z + 4 = 0 and 4x + 3y + 2z + 1 = 0 and the origin is ______.


If the line `(x + 1)/2 = (y - 5)/3 = (z - "p")/6` lies in the plane 3x – 14y + 6z + 49 = 0, then the value of p is ______.


If the mirror image of the point (2, 4, 7) in the plane 3x – y + 4z = 2 is (a, b, c), then 2a + b + 2c is equal to ______.


Let P be a plane passing through the points (1, 0, 1), (1, –2, 1) and (0, 1, –2). Let a vector `vec"a" = αhat"i" + βhat"j" + γhat"k"` be such that `veca` is parallel to the plane P, perpendicular to `(hat"i"+2hat"j"+3hat"k")`and `vec"a".(hat"i" + hat"j" + 2hat"j")` = 2, then (α – β + γ)2 equals ______.


If A and B are foot of perpendicular drawn from point Q(a, b, c) to the planes yz and zx, then equation of plane through the points A, B and O is ______.


Find the equation of the plane containing the lines `(x - 1)/2 = (y + 1)/-1 = z/3` and `x/2 = (y - 2)/-1 = (z + 1)/3`.


Find the equation of plane which is at a distance of 4 units from the origin and which is normal to the vector `2hati - 2hatj + hatk`.


Find the vector equation of the line passing through the point (–2, 1, 4) and perpendicular to the plane `barr*(4hati - 5hatj + 7hatk)` = 15


Find the point of intersection of the line `(x + 1)/2 = (y - 1)/3 = (z - 2)/1` with the plane x + 2y – z = 6.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×